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Chapter 7 

Partial fractions 

 

An algebraic fraction is a fraction in which the numerator and denominator 

are both polynomial expressions. A polynomial expression is one where 

every term is a multiple of a power of x, such as 

5x4 + 6x3 + 7x + 4 

The degree of a polynomial is the power of the highest term in x. So in this 

case the degree is 4. 

The number in front of x in each term is called its coefficient. So, the 

coefficient of x4 is 5. The coefficient of x3 is 6. 

Now consider the following algebraic fractions: 

 

In both cases the numerator is a polynomial of lower degree than the 

denominator. We call these proper fractions 

With other fractions the polynomial may be of higher degree in the numerator 

or it may be of the same degree, for example 
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1. Revision of adding and subtracting fractions 

We now revise the process for adding and subtracting fractions. Consider 

 

In order to add these two fractions together, we need to find the lowest common 

denominator. In this particular case, it is (x − 3)(2x + 1). 

 

We write each fraction with this denominator. 

 

The denominators are now the same so we can simply subtract the numerators 

and divide the result by the lowest common denominator to give 

 

Sometimes in mathematics we need to do this operation in reverse. In calculus, 

for instance, or when dealing with the binomial theorem, we sometimes need to 

split a fraction up into its component parts which are called partial fractions. 

We discuss how to do this in the following section. 

 If the degree of the numerator is less than the degree of the denominator 

the fraction is said to be a proper fraction 

 If the degree of the numerator is greater than or equal to the degree of the 

denominator the fraction is said to be an improper fraction 
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2. Expressing a fraction as the sum of its partial 

fractions 

In the previous section we saw that 

 

By inspection of the denominator we see that the component parts must have 

denominators of x − 3 and 2x + 1 so we can write 

 

where A and B are numbers. A and B cannot involve x or powers of x because 

otherwise the terms on the right would be improper fractions. 

 

The next thing to do is to multiply both sides by the common denominator 

(x−3)(2x+1). This gives 

 

Then cancelling the common factors from the numerators and denominators of 

each term gives 

3x + 5 = A(2x + 1) + B(x − 3) 

Now this is an identity. This means that it is true for any values of x, and because 

of this we can substitute any values of x we choose into it. Observe that if we let 

x = −1/2 the first term on the right will become zero and hence A will disappear. 

If we let x = 3 the second term on the right will become zero and hence B will 

disappear. 
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which is the sum that we started with, and we have now broken the fraction 

back into its component parts called partial fractions. 

 

 

where A and B are numbers. 
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We multiply both sides by the common denominator (x − 1)(x + 2): 

3x = A(x + 2) + B(x − 1) 

This time the special values that we shall choose are x = −2 because then the 

first term on the right will become zero and A will disappear, and x = 1 because 

then the second term on the right will become zero and B will disappear. 

 

 

and we have expressed the given fraction in partial fractions. 

 

Example: Express the following as a sum of partial fractions 

xx 9

1
 

3   

 واضح أن الكسر حقيقي، لذلك :

339

1
3 
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3)-(C3)(B3)3)(-A(1 xxxxxx  

ينتج أن   0x =بوضع 
9

1
A 

ينتج أن   3x =بوضع 
18

1
B 

ينتج أن   x =-3بوضع 
18

1
C 

.
)3(18

1

)3(18

1

9

1

9

1
3 





 xxxxx

 

Sometimes the denominator is more awkward as we shall see in the following 

section. 

 

3. Fractions where the denominator has a repeated 

factor 

 

 
where A, B and C are numbers. 

As before we multiply both sides by the denominator (x − 1)2(x + 2) to give 

3x + 1 = A(x − 1)(x + 2) + B(x + 2) + C(x − 1)2 (1) 
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Again we look for special values to substitute into this identity. If we let x = 1 

then the first and last terms on the right will be zero and A and C will disappear. 

If we let x = −2 the first and second terms will be zero and A and B will 

disappear. 

 

We now need to find A. There is no special value of x that will eliminate B and 

C to give us A. We could use any value. We could use x = 0. This will give us an 

equation in A, B and C. 

Since we already know B and C, this would give us A. 

But here we shall demonstrate a different technique - one called equating 

coefficients. We take equation 1 and multiply-out the right-hand side, and then 

collect up like terms. 
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Example: Express the following as a sum of partial fractions 

2

2

)1)(1(

22
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)1()1)(1()1(22 22 xCxxBxAxx  

 الطرفين ينتج أن في x = -1 بوضع

2

1
42  AA 

 ينتج أن الطرفين في x = 1 بوضع

 

 الطرفين ينتج أن في 2xمعامل بمساواة

2

3
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4. Fractions in which the denominator has a 

quadratic term 
 

 

 

Sometimes we come across fractions in which the denominator has a quadratic term 

which cannot be factorised. We will now learn how to deal with cases like this. 

 

 

Example:  Suppose we want to express 

 

 

as the sum of its partial fractions. 

 

Note that the two denominators of the partial fractions will be (x2+x+1) and 

(x−2). When the denominator contains a quadratic factor we have to consider 

the possibility that the numerator can contain a term in x. This is because if it 

did, the numerator would still be of lower degree than the denominator - this 

would still be a proper fraction. So we write 

 

As before we multiply both sides by the denominator (x2 + x + 1)(x − 2) to give 

5x = (Ax + B)(x − 2) + C(x2 + x + 1) 

One special value we could use is x = 2 because this will make the first term on 

the right-hand side zero and so A and B will disappear. 
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Example:    Express the following as a sum of partial fractions   

)22)(1(

1
 

2 
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x 
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 واضح أن أحد عوامل المقام من الدرجة الثانية ولا يمكن تحليله، لذلك : 

221)22)(1(
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)1)(()22(1 2  xCBxxxAx 

 2A الطرفين ينتج أن في x=-1 بوضع

 الطرفين ينتج أن في 2x معامل بمساواة

20  ABBA 
. 

 في الطرفين )أي بمساواة الحد المطلق في الطرفين( ينتج أن x=0بوضع 

3141221  ACCA 
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Example:    Express the following as a sum of partial fractions   
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 الحد المطلق في الطرفين نحصل على المعادلات التالية : ،3x، 2x، x معامل بمقارنة
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Exercises 

 

 

 

 

Express the following as a sum of powers of x and partial fractions 

(1) 
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Di�erential equations � Introduction

A di�erential equation is an equation involving a variable and its derivatives with respect to one
or more independent variables� Di�erential equations often arise in modelling real world phenomena �
derivatives give rates of change	 and rates of change are often empirically measurable�

The order of the equation is the order of the highest�order derivative that it contains� If there is a
single independent variable	 the equation is an ordinary di�erential equation �ODE�
 if there are several
independent variables	 it is a partial di�erential equation �PDE��

dy

dx
�

�

x
y � x�ex �rst order	 ordinary

��u

�x�
�

��u

�t�
second order	 partial

To solve the di�erential equation means roughly� to �nd an expression for the dependent variable in
terms of the independent variables which satis�es the original equation�

Example�
dy

dx
� ��� y��

The solution is

y �
cex � �

cex � �

c is an arbitrary constant� That is	 the expression above is a solution for any value of c� c � �	 c � �	
c � ����	 and so on�

You can verify that y �
cex � �

cex � �
solves the equation by plugging it into both sides and checking that

the equation is true�
dy

dx
�

�cex

cex � ���
�

�

�
�� y�� �

�cex

cex � ���
�

It is good to remember that you can check the solution to a di�erential equation by plugging in�

Note that each value of c gives a di�erent solution y �
cex � �

cex � �
� Intuitively	 the original equation

involves a �rst derivative� You �undo� a �rst derivative by integrating once� A single integration produces
one arbitrary constant�

-1 -0.5 0.5 1

-40

-20

20

40

�



The picture shows the solution curves for c � ��������� �� ���� �� The solution curves for di�erent
values of c form a family of curves which �ll up the plane� They may remind you of the integral curves of
a vector �eld� Indeed	 the two situations are closely related�

Take a �rst order equation
dy

dx
� fx� y��

dy

dx
is the slope of a solution curve	 so the equation says that fx� y� is the slope of a solution curve at

the point x� y�� For example	 suppose
dy

dx
�

x

y � �
�

The slope of the solution curve passing through the point �� �� is
dy

dx
�

�

� � �
� ��

It follows that you can get a rough picture of the solution curves by drawing a little segment at each
point x� y� such that the slope of the segment is fx� y�� You could do this by hand with a piece of graph
paper
 you can also use q computer equipped with the appropriate software� The symbolic math package
Mathematica has a function called PlotVectorField which draws a picture of a vector �eld� Here�s how to
use it�

First	 you will need to load the package containing the function�

Needs��Graphics�PlotField���

I�ll use
dy

dx
�

x

y � �
as an example� Think of the fraction as dy divided by dx	 with dy � x and

dx � y � �� The vector �eld is hy � �� xi� The following command draws a picture of the �eld�

PlotVectorField��y � �	 x
	 �x	 �	 �
	 �y	 �	 �
�

You can get the solution curves by sketching in curves which follow the arrows�

�



What do you do with something like
dy

dx
� x� � y�� It isn�t obviously a fraction� Just choose dx and

dy so the quotient is x� � y�� For example	 dx � � and dy � x� � y� will work�

PlotVectorField���	 x� � y�
	 �x	 ��	 �
	 �y	 ��	 �
�

The pictures above are called direction �elds� Note that you can draw them without actually solving
the equation� Hence	 you can sometimes tell things about the solution curves without actually solving the
equation�

Generically	 the general solution to an n�th order di�erential equation has n arbitrary constants� To
put things informally	 the general solution is an expression which contains all possible solutions as special
cases�

This course is primiarly concerned with ordinary di�erential equations� Partial di�erential equa�
tions are often more di�cult to solve	 and may require techniques such as Fourier series�

Example� Verify that u � x� � t� is a solution to

��u

�x�
�

��u

�t�
�

This equation is a special case of the wave equation��

uxx � � � utt�

Example� Find the values of r such that y � erx is a solution to

y�� � �y� � �y � ��

The derivatives are taken with respect to x��

Compute the �rst and second derivatives�

y � erx� y� � rerx� y�� � r�erx�

Plug them into the di�erential equation and solve for r�

y�� � �y� � �y � r�erx � �rerx � �erx � r� � �r � ��erx � ��

Then r� � �r � � � �	 or r � ��r � �� � �	 so r � � or r � ���

�



e�x and e�x are solutions to the equation�

Remarks�

�� The previous example shows that if you can guess the form of a solution to a di�erential equation	 you
can often obtain a solution�

�� An equation of the form

anx�y
�n� � an��x�y

�n��� � � � �� a�x�y
� � a�x�y � fx�

is a linear equation in y� The dependent variable y and its derivatives only occur to the �rst power	
with coe�cients which are functions of x alone�

c����� by Bruce Ikenaga �
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Separation of variables

In some cases� you can solve a di�erential equation

f �x� y� y�	 
 �

by moving all the x�s to one side and the y�s to the other Then solve the equation by integrating both sides
This is called separation of variables

Example� x� dx� y�x � �	 dy 
 �

Separate�

x� dx� y�x � �	 dy 
 �

�

Z
x�

x� �
dx 


Z
y dy

Integrate�

�

Z �
x� � �

�

x� �

�
dx 


Z
y dy

�

�
�

�
x� � x� ln jx� �j

�
� C 


�

�
y�

�x� � x� � ln jx� �j� C� 
 y�

Observe that there is one integration step� hence only one constant
Note also that in the last line I replaced �C with C� It would not be wrong to write �C� but this is

neater You can always rename constant quantities to make the result look nicer
Finally� the problem did not include an initial condition� hence� I�ve stopped at y�� rather than taking

square roots Without an initial condition� I can�t tell which square root to take

Example� �Exponential growth or decay� Let a be a constant The exponential growth or decay
equation describes a situation in which a variable grows or shrinks at a rate proportional to the amount
present�

dy

dx

 ay�

Separate�
dy

dx

 ay�

Z
dy

y



Z
a dx�

Integrate and solve for y�

ln jyj 
 ax� C� jyj 
 eax�C 
 eCeax� y 
 C�e
ax�

�I�ve replaced �eC with C�	 If a � �� then y increases as x increases� exponential growth If a � ��
then y decreases as x decreases� exponential decay

Example� �Logistic growth� In the real world� things cannot grow without bound In many cases� there is
a natural limit to the ability of an environment to support the growth of a population For example� there
are always limits to the food supply and space

�



In many cases� this situation is modelled by the logistic equation Let a be a constant The logistic
equation is

dN

dt

 aN

�
��

N

K

�
�

Separate�
dN

dt

 aN

�
��

N

K

�

Z
dN

N

�
��

N

K

� 


Z
a dt

K

Z
dN

N �K � N 	



Z
a dt

Compute the integral on the left by partial fractions�

�

N �K �N 	



A

N
�

B

K � N

� 
 A�K �N 	 � BN

Set N 
 �� then � 
 KA� so A 

�

K
 Set N 
 K� � 
 KB� so B 


�

K
 Therefore�

�

N �K � N 	



�

K

�
�

N
�

�

K �N

�
�

Back to the integration� Z �
�

N
�

�

K � N

�
dN 


Z
a dt

ln jN j � ln jK �N j 
 at�C

Now solve for N in terms of t�

ln

���� N

K �N

���� 
 at�C

���� N

K � N

���� 
 eat�C 
 eCeat

N

K � N

 C�e

at

N 
 KC�e
at �C�e

atN

N
�
� � C�e

at
�

 KC�e

at

N 

KC�e

at

� �C�eat

Note that lim
t��

N 
 K Thus� K is the limiting population It is often called the carrying capacity�

the largest population that the environment can support

Example� �Dropping solutions� Consider the equation

dy

dx

 �x� �	�y � �	����

�



Separate�
dy

dx

 �x� �	�y � �	���

Z
dy

�y � �	���



Z
�x� �	 dx

Integrate and solve for y�

��y � �	��� 

�

�
�x� �	� �C

�y � �	��� 

�

�
�x� �	� �C�

y � � 


�
�

�
�x� �	� � C�

��

y 


�
�

�
�x� �	� � C�

��

� �

All of this looks routine However� note that y 
 �� is a solution to the original equation�

dy

dx

 � and �x� �	�y � �	��� 
 ��

You can see the solution y 
 �� as a horizontal line in the direction �eld below�

However� you can�t obtain y 
 �� from y 


�
�

�
�x� �	� � C�

��

� � by setting the constant C� equal

to a number �You�d need to �nd a constant which makes
�

�
�x� �	� � C� 
 � for all x	

Two points emerge from this

� You can often drop solutions by performing certain algebraic operations �in this case� division	

� You don�t always get every solution to a di�erential equation by assigning values to the arbitrary
constants

Example� �Equations of the form y� 
 f�ax � by � c	� A standard rule of thumb is to substitute for an
expression which appears �a lot� in an equation or expression A di�erential equation

y� 
 f�ax � by � c	

can be reduced to a separable equation by the substitution v 
 ax� by � c

�



Consider the equation y� 
 �x� y � �	� Let v 
 x� y � �� so v� 
 � � y� Then

v� � � 
 v�

dv

dx

 v� � �

Z
dv

v� � �



Z
dx

arctan v 
 x� C

v 
 tan�x�C	

x� y � � 
 tan�x�C	

y 
 tan�x�C	� x� ��

c����� by Bruce Ikenaga �
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Exact Equations and Integrating Factors

An equation
M �x� y� dx� N �x� y� dy 	 


is exact if
�f

�x
	 M and

�f

�y
	 N for some f�x� y��

This is the same as saying that the vector �eld hM �x� y�� N �x� y�i is a gradient �eld �or a conservative
�eld� � in fact hM �x� y�� N �x� y�i 	 rf �

The reason this is important is that an exact equation can be integrated� Here�s an example�

��x�y � �y� dx� �x� � �x� dy 	 


If f�x� y� 	 x�y � �xy then

�f

�x
	 �x�y � �y and

�f

�y
	 x� � �x�

Therefore the equation may be rewritten as

�f

�x
dx�

�f

�y
dy 	 
� or df 	 
�

Integrating both sides gives f 	 C i�e� x�y � �xy 	 C� The di�erential equation is solved�
It�s useful then to be able to tell when an equation M dx � N dy 	 
 is exact� This amounts to

determining if hM�N i is a conservative �eld� This is a problem in multivariable calculus and the solution
is well known� With reasonable conditions on M and N  the �eld hM�N i is conservative if and only if
�M

�y
	

�N

�x
�

Example� Solve �sin y � sinx� dx� �x cos y � �� dy 	 
 y�
� 	 ��

M 	 sin y � sinx� N 	 x cos y � �� so
�M

�y
	 cos y�

�N

�x
	 cos y�

The equation is exact�
I need to �nd a function f such that

�f

�x
	 sin y � sinx and

�f

�y
	 x cos y � ��

I can use the partial integration technique which is used to recover a potential function for a conservative
�eld�

Integrate M 	
�f

�x
with respect to x�

�f

�x
	 siny � sinx� so f 	

Z
�sin y � sinx� dx 	 x siny � cosx� g�y��

Here g is constant with respect to x so it is a function of y alone�
Now di�erentiate with respect to y�

x cos y �
dg

dy
	

�f

�y
	 x cos y � ��

�



This means that
dg

dy
	 � so g�y� 	 y � h�

h is a numerical constant which I may take to be 
� Then

f 	 x sin y � cos x� y�

The original equation becomes df 	 
 so f 	 C by integrating both sides� The solution is

x sin y � cosx� y 	 C�

�A common mistake is to write f 	 x sin y � cosx � y for the solution� However this is just the
potential function� The solution to a �rst�order equation ought to contain an arbitrary constant � hence
x sin y � cos x� y 	 C��

Finally plug in the initial condition x 	 
 y 	 ��


 � sin � � cos 
 � � 	 C� C 	 ��

The solution is
x sin y � cosx� y 	 ��

Example� Solve
dy

dx
	

�

y
� �xy� � �x

x

y�
� �x�y�

�

The equation is not separable nor is it �rst�order linear in x or in y� Rewrite the equation as

�
�

y
� �xy� � �x

�
dx�

�
x

y�
� �x�y�

�
dy 	 
�

Now

M 	
�

y
� �xy� � �x� N 	 �

x

y�
� �x�y�� so

�M

�y
	 �

�

y�
� �xy��

�N

�x
	 �

�

y�
� �xy��

The equation is exact� I must �nd an f such that
�f

�x
	 M and

�f

�y
	 N �

Integrate M 	
�f

�x
with respect to x�

�f

�x
	

�

y
� �xy� � �x� so f 	

Z �
�

y
� �xy� � �x

�
dx 	

x

y
� x�y� � �x� � g�y��

Now di�erentiate with respect to y�

�
x

y�
� �x�y� �

dg

dy
	

�f

�y
	 �

x

y�
� �x�y��

Therefore
dg

dy
	 
 and g�y� 	 h 	 
�

Hence

f 	
x

y
� x�y� � �x� 	 C�

�



Example� The equation �
�y

x
� �y�

�
dx� �� � �xy� dy 	 


is not exact because
�N

�x
	 ��y while

�M

�y
	

�

x
� ��y�

In some cases �such as this one� it may be possible to multiply by something which will make the equation

exact� Suppose that something is called P � I want this equation to be exact�

PM dx� PN dy 	 
�

This means that
�PN

�x
	

�PM

�y
�

In general you can�t solve this for P without some other conditions� Suppose that P is a function of x

only� Then

P
�N

�x
� N

dP

dx
	 P

�M

�y
�

Then

�P

�x
	

�M

�y
�
�N

�x

N
P�

If

�M

�y
�
�N

�x

N
is a function of x �but not y� this equation is separable� I can solve it for P in terms

of x� Then I multiply the original equation by P to get an exact equation and I solve the resulting exact
equation�

Going back to the example
�M

�y
�
�N

�x

N
	

�� �xy

x
�� �xy

	
�

x
�

By the derivation above the integrating factor P satis�es

�P

�x
	

�M

�y
�
�N

�x

N
P or

dP

dx
	

�

x
P�

Separating variables and integrating yields P 	 x�� Now go back and multiply the original equation by
x�� it becomes

��xy � �x�y�� dx� ��x� � �x�y� dy 	 
�

This equation is exact�
�M

�y
	 �x� ��x�y�

�N

�x
	 �x� ��x�y�

You can check for yourself that the solution is

�x�y � �x�y� 	 C�

�



There is a similar result which applies when

�N

�x
�
�M

�y

M
is a function of y only� I�ll summarize these

two results below�
Given an equation M dx�N dy 	 
 which is not exact�

�� If

�M

�y
�
�N

�x

N
is a function of x alone then an integrating factor P is given by

P 	 exp

Z �M

�y
�
�N

�x

N
dx�

�� If

�N

�x
�
�M

�y

M
is a function of y alone then an integrating factor P is given by

P 	 exp

Z �N

�x
�
�M

�y

M
dy�

Find the integrating factor multiply the original equation by the integrating factor then solve the
resulting exact equation�

As a matter of strategy then if
�N

�x
�	

�M

�y
 �nd the di�erence

�N

�x
�

�M

�y
and divide it by M

�respectively by N � to see if you get a function of y alone �respectively x alone�� Note that you use
�M

�y
�
�N

�x
in the x case but

�N

�x
�
�M

�y
in the y case� the sign does make a di�erence�

It is also possible to �nd integrating factors in other �more complicated� cases�
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Homogeneous equations

A function f�x� y� is homogeneous of degree n in x and y if

f�ax� ay� � anf�x� y��

Roughly	 this means that the 
total power� of x and y is the same in all the terms of f�x� y�� Here are
some examples�

Example� sin
x

y
is homogeneous of degree �

sin
ax

ay
� sin

x

y
� a� sin

x

y
�

Example�
�x� �y

�x� �y
is also homogeneous of degree �

�ax� �ay

�ax� �ay
�

�x� �y

�x� �y
� a�

�x� �y

�x� �y
�

Example� cos x is not homogeneous of any degree�

cos ax �� an cos x

is not an identity for any n�

Example� �x� � �x�y� � xy� is homogeneous of degree ��

��ax�� � ��ax���ay�� � �ax��ay�� � a�
�
�x�

�
x�y� � xy�

�
�

Here is how this applies to di�erential equations� A �rst�order equation

M �x� y� dx� N �x� y� dy � 

is homogeneous if M and N are homogeneous functions of the same degree�

Example� The equation
�x� � �xy� dx� ��x� � y�� dy � 

is homogeneous	 since x� � �xy and �x� � y� are homogeneous of degree ��
On the other hand	

�x� �y� dx� �x� � �y�� dy � 

is not homogeneous� x� �y and x� � �y� are individually homogeneous	 but not of the same degree�

�



�sinx� cos y� dx � x cos y dy � 

is not homogeneous	 since sinx� cos y and x cos y are not homogeneous�

The following two facts can be used to simplify a homogeneous di�erential equation�

Fact �� If M and N are homogeneous of the same degree	 then
M

N
is homogeneous of degree �

Proof�
M �ax� ay�

N �ax� ay�
�
anM �x� y�

anN �x� y�
�

M �x� y�

N �x� y�
� a�

M �x� y�

N �x� y�
�

Fact �� If f is homogeneous of degree 	 then f can be expressed as a function of
y

x
�

Proof� Since f is homogeneous of degree 	 f�ax� ay� � a�f�x� y� � f�x� y� is an identity� Set a �
�

x
�

f
�
��
y

x

�
� f�x� y��

The left side is a function of
y

x
�

Now suppose

M dx� N dy � 

is homogeneous� Rewrite it as
dy

dx
� �

M

N
�

The right side is homogeneous of degree  �Fact ��	 so it can be written as a function of
y

x
�Fact ���

Suppose then that

�
M

N
� g

�y
x

�
�

Let y � vx	 so
y

x
� v� Then

�
M

N
� g�v��

and by the Product Rule	
dy

dx
� v � x

dv

dx
�

The original equation becomes

v � x
dv

dx
� g�v� or

dv

dx
�

g�v� � v

x
�

This equation can be solved by separation of variables�

Example� Solve y� �
�x� y

x� y
�

The right side is clearly homogeneous of degree �

�



Let y � vx	 so
dy

dx
� v � x

dv

dx
� Substitute�

v � x
dv

dx
�

�� v

� � v
� x

dv

dx
�

�� v

� � v
� v �

�� � v��� � v�

� � v
�

Separate� Z
� � v

�� � v��� � v�
dv �

Z
dx

x
�

Decompose the integrand on the left using partial fractions�

� � v

�� � v��� � v�
�

A

� � v
�

B

�� v

� � v � A��� v� �B�� � v�

Setting x � � yields � � �B	 so B �
�

�
� Setting x � �� yields �� � �A	 so A � �

�

�
� Therefore	

� � v

�� � v��� � v�
�

�

�

�
�

�

� � v
�

�

�� v

�
�

Now Z
�

�

�
�

�

� � v
�

�

�� v

�
dv �

Z
dx

x
�

�

�
�� ln j� � vj � ln j�� vj� � ln jxj�C�

Combine the logs on the left	 then exponentiate to kill the logs�

ln j�� � v��� � v�j � �� ln jxj � �C� �� � v��� � v� �
C�

x�
�

Finally	 put y back�

�
� �

y

x

��
��

y

x

�
�

C�

x�
� ��x� y��x � y� � C��

Example� Solve �x� y ln y � y lnx� dx� x�ln y � lnx� dy � �

Rewrite the equation as �
x� y ln

y

x

�
dx� x ln

y

x
dy � �

x� y ln
y

x
and x ln

y

x
are homogeneous of degree ��

Rearrange the equation�

dy

dx
�
y ln

y

x
� x

x ln
y

x

�

The right side is homogeneous of degree � Let y � vx	 so v �
y

x
and

dy

dx
� v � x

dv

dx
� Substitute�

v � x
dv

dx
�
xv lnv � x

x ln v
�
v ln v � �

ln v
� x

dv

dx
�

v ln v � �

ln v
� v �

�

lnv
�

Separate� Z
lnv dv �

Z
�

x
dx�

�



Integrate lnv by parts�
d

dv

R
dv

� lnv �
�

�
�

v
� v

Therefore	 Z
ln v dv � v ln v �

Z
�

v
� v dv � v ln v �

Z
dv � v lnv � v � C�

Hence	
v lnv � v � lnx� C�

Put y back�
y

x
ln
y

x
�
y

x
� lnx� C� y ln

y

x
� y � x lnx� Cx�

Example� Solve �x� y � �� dx� �x� �y � �� dy � �

This would be homogeneous if the 
�� and 
�� weren�t there� The idea is to make a preliminary
substitution

x � u� h� y � v � k�

I will choose h and k so that the result is homogeneous�
Since dx � du and dy � dv	

�u� v � h� k � �� du� �u� �v � h� �k � �� dv � �

I want to pick h and k so that the constant terms go away�

h� k � � � � h� �k � � � �

Solving simultaneously	 I obtain k � �	 h � ��� The substitution is

x � u� �� y � v � ��

With this substitution	 the equation becomes

�u� v� du � �u� �v� dv � � or
dv

du
� �

u� v

u� �v
�

Let v � wu	 so w �
v

u
and

dv

du
� w � u

dw

du
�

Then

w � u
dw

du
� �

u� wu

u� �wu
� �

� �w

� � �w
� u

dw

du
� �

� � w

� � �w
� w �

�w� � �w � �

�w � �
�

Separate� Z
�w � �

�w� � �w � �
dw � �

Z
du

u
�

�

�
ln j�w� � �w � �j � � ln juj� C�

Put v bacK�
�

�
ln

�����
�v
u

��
� �

v

u
� �

���� � � ln juj�C�

�



Put x and y back�

�

�
ln

������
�
y � �

x� �

��

� �
y � �

x� �
� �

����� � � ln jx� �j� C�

Example� Solve �x� y � �� dx� ��x� �y � �� dy � �

This looks like the previous problem� But if you let

x � u� h� y � v � k�

and then try to choose h and k so the constant terms go away	 you�ll get stuck�
Reason� The h and k equations become

h� k � ��� �h� �k � ��

and these equations are inconsistent � there are no solutions�
Instead	 let z � x� y	 so dz � dx� dy� Substitute and eliminate x�

�z � ���dz � dy� � ��z � �� dy � � ��
dz

dy
�

�z � �

z � �
� �

dz

dy
�

�z � �

z � �
� � �

z � �

z � �
�

Separate�

�

Z
z � �

z � �
dz �

Z
dy� �z � � ln jz � �j � y � C�

Put x back�
�x� y � � ln jx� y � �j � y �C�
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A Review of Elementary Solution Methods

Here is a list of the kinds of equations I�ve discussed so far�

�� Separable equations�

�� Exact equations�

	� Homogeneous equations�


� First�order linear equations�

�� Bernoulli and Riccati equations�

�� Equations requiring clever substitutions�

� Linear constant coe�cient homogeneous equations�

Linear constant coe�cient homogeneous equations are straightforward� and I won�t review them here�
There are two things involved in solving the other types of equations�

�� You need to know how to apply each technique�

�� You need to know which technique to apply in a given problem�

Sometimes� it is simply a matter of trying one technique after another� However� this doesn�t mean that
you should use the �rst thing that works � there may be an easier way� Take the time to think about how
each of the methods would work in a given problem�

Example� ��x� 	y � �� dx� �	x� �y � 
� dy � ��

Write the equation as
��x� 	y � �� dx � �	x� �y � 
� dy�

Evidently� there is no way to separate the x�s and y�s�
The equation is not homogeneous� however� it could be converted into a homogeneous equation by the

substitutions x � u � a� y � v � b� After making the substitutions� you�d need to solve for a and b so as to
make the constant terms vanish�

This method will work� though it is a little tedious�
Even when you have a method that will work� it is often wise to look at the problem a little longer to

see if there is an easier way�
The equation does not seem to be �rst�order linear� On the other hand�

�M

�y
� �	 and

�N

�x
� �	�

so the equation is exact� The method of exact equations is usually easier than the method of homogeneous
equations� so I�ll use exact equations rather than the substitution I noticed earlier�

I must �nd an f such that
�f

�x
� M and

�f

�y
� N � Integrate M with respect to x�

f �

Z
��x� 	y � �� dx � x� � 	xy � x� g�y��

Compute
�f

�y
and set it equal to N �

��	x� �y � 
� �
�f

�y
� �	x� dg

dy
�

�



Therefore�
dg

dy
� ��y � 
� g � �y� � 
y�

Therefore� f � x� � 	xy � x� y� � 
y� The solution is

x� � 	xy � x� y� � 
y � C�

Example� xy� � y �
p
y� � x��

The equation is not separable� Solve for
dy

dx
�

dy

dx
�

y

x
�

p
y� � x�

x
�

It is not �rst�order linear in y�

Solve for
dx

dy
�

dx

dy
�

x

y �
p
y� � x�

�

It is not �rst�order linear in x�
Check for exactness� Write the equation as

�y �
p
y� � x�� dx� x dy � ��

Then
�M

�y
� � �

yp
y� � x�

and
�N

�x
� ���

It is not exact�
It better be homogeneous�

dy

dx
�

y �
p
y� � x�

x
�

y

x
�

r�y
x

��
� ��

The right side is a function of
y

x
� the equation is homogeneous�

Let y � vx� so
dy

dx
� v � x

dv

dx
� Then

v � x
dv

dx
�

vx �
p
v�x� � x�

x
� v �

p
v� � �� x

dv

dx
�
p
v� � ��

Separate variables�

Z
dvp
v� � �

�

Z
�

x
dx� ln j

p
v� � �� vj � ln jxj� C�

I�ll do the v�integral separately�

Z
dvp
v� � �

�

Z
�sec ���p
�tan ��� � �

d� �

�



Z
�sec ���p
�sec ���

d� �

Z
sec � d� � ln j sec � � tan �j �C � ln j

p
v� � � � vj �C�

Put y back�

ln

�����
r�y

x

��
� � �

y

x

����� � ln jxj� C�

Exponentiate both sides and rename the constant�

r�y
x

��
� � �

y

x
� C�x�

Example� �	x�y� � �y� dx� x dy � ��

The equation is clearly not homogeneous or separable�

�M

�y
� �x�y� � � but

�N

�x
� ���

It is not exact�

Solve for
dy

dx
and

dx

dy
�

dy

dx
� 	xy� � �

x
y and

dx

dy
�

x

	x�y� � �y
�

It is not �rst�order linear in x or y�

Rearrange the
dy

dx
equation�

dy

dx
�

�

x
y � 	xy��

It is a Bernoulli equation� Let v � y��� � y��� Then
dv

dx
� �y��

dy

dx
� Multiply the equation by ��y���

��y��
dy

dx
� 


x
y�� � ��x�

Substitute�
dv

dx
� 


x
v � ��x�

This is �rst order linear in v� The integrating factor is

I � exp

Z
�


x
dx � x���

Therefore�

vx�� �

Z
��x�� dx � 	x�� �C� v � 	x� �Cx��

Put the y�s back�

y�� � 	x� � Cx�� y� �
�

	x� � Cx�
�

Example�
dy

dx
� tan y cotx� sec y cos x�

	



The equation is not �rst�order linear in either variable� It is not separable� nor is it homogeneous� It is
not Bernoulli�

Is it exact� Rearrange it�

�sinx� sin y� cos x dx� sinx cos y dy � ��

Therefore�
�M

�y
� � cos y cos x and

�N

�x
� cosx cos y�

It is not exact�
The idea here is to try to substitute to simplify the equation� The test of whether a substitution is

the right one is whether it works� One rule of thumb is to look for common expressions � expressions that
appear in several places� Another rule of thumb is to look for substitutions that eliminate one variable or
another� In this vein� it is good to look for u�du combinations�

In the equation �sinx� sin y� cos x dx�sinx cos y dy � � notice the �cos y dy� at the end� the di�erential
of sin y� Try u � sin y� so du � cos y dy�

�sinx� u� cosx dx� sinx du � ��
du

dx
� u

cosx

sinx
� � cos x�

The equation is �rst�order linear in u�
The integrating factor is

I � exp

Z
�cosx

sinx
dx � exp� ln�sinx� �

�

sinx
�

Hence�

u
�

sinx
� �

Z
cosx

sinx
dx � � ln j sinxj� C�

Solve for u�
u � � sin x ln j sinxj� C sinx�

Put y back�
sin y � � sinx ln j sinxj�C sinx�

Example� A tank contains �� gallons of pure water� Water containing � pounds of dissolved yogurt per
gallon enters the tank at 
 gallons per minute� The well�stirred mixture drains out at 
 gallons per minute�
How much yogurt is dissolved in the tank mixutre after �� minutes� Find the limiting amount of yogurt in
the tank as t���

Let Y be the number of pounds of dissolved yogurt at time t�

dY

dt
� in�ow� out�ow �

�


gal

min

��
�
lb

gal

�
�
�


gal

min

��
Y lb

�� gal

�
�

Then
dY

dt
�

Y

�
� ��

You can do this by separation or by using an integrating factor� I will do the latter�

I � exp

Z
�

�
dt � exp

t

�
�






Then

Y exp
t

�
�

Z
exp

t

�
dt � 
� exp

t

�
� C�

The solution is

Y � 
� �C exp
�t
�
�

Initially� there is no yogurt in the tank�

� � Y ��� � 
�� C� so C � �
��

Therefore�

Y � 
�� 
� exp
�t
�
�

When t � ���
Y ���� � 
�� 
�e�� � 	
�������

As t��� exp
�t
�
� �� so Y � 
�� In the limit� the amount of dissolved yogurt approaches 
� pounds�

This makes sense� since the tank is being �ushed with water containing � pounds of yogurt per gallon� and
the tank holds �� gallons�

c����� by Bruce Ikenaga �
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Chapter 3 

Infinite sequences and series 

 

Infinite sequences 

Definition: 

An infinite sequence of numbers is a function whose domain is the set of positive 

integers. 

♦ A sequence is a list of numbers 

1 2 3, , , , ,na a a a  

the first term 1a , the second term 2a , and so on the nth term na . 

♦ The integer n is called the index of na . 

♦ We can think of the sequence 

1 2 3, , , , ,na a a a  

as a function that sends 1 to 1a , 2 to 2a  and in general sends the positive integer n to     

nth term na . 

♦ The sequence can be written as  na . 

♦ The sequence  

1, 2, 3, , ,n  

can be written 

   1, 2, 3, , ,na n=  

or 

   
1

n
n

a n


=
= . 



2 
 

♦ The sequence 1,2,3,4,  is not the same as the sequence 2,1,3,4, . 

 

Convergence and divergence 

Definition: 

The sequence  na converges to the number L if for all 0   there exists an integer N

such that for all n  

| |nn N a L   −  . 

If no such number L exists, we say that  na  diverges. 

♦ If  na  converges to L , we write  

lim n
n

a L
→

=  

or simply na L→ , and call L the limit of the sequence  na . 

Remark: 

If 0x  , then there exists an integer N such that  

1
x

N
 . 

Example (1): 

By using the definition, prove that 

(1) 
1

lim 0
n n→

=                            (2) 
1

lim 1
n

n

n→

−
=                   (3) 

1
lim 0

2n
n →

= . 

Solution: 

(1) 
1

lim 0
n n→

=  

Let  0   be given. Now we must show that there exists an integer N such that for all 

n  
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1 1 1
| 0 | | |n N
n n n

    −       

0  , from the above remark, there exists an integer N such that 

                                                                       
1

N
  .                                                      (1) 

If 
1 1

n N
n N

                                                                                                        (2) 

then from (1) and (2) we get  

1

n
 . 

Then 
1

lim 0
n n→

= . 

(2) 
1

lim 1
n

n

n→

−
=  

Let  0   be given. Now we must show that there exists an integer N such that for all 

n  

1 1 1 1
| 1| | | | |
n n n

n N
n n n n

   
− − − −

  −         

0  , there exists an integer N such that 

                                                                       
1

N
  .                                                      (3) 

If 
1 1

n N
n N

                                                                                                        (4) 

then from (3) and (4) we get  

1

n
 . 
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Then 
1

lim 1
n

n

n→

−
= . 

 (3) 
1

lim 0
2n

n →
=  

Let  0   be given. Now we must show that there exists an integer N such that for all 

n  

1 1 1
| 0 | | |
2 2 2n n n

n N     −       

2n n  for n    
1 1

2n n
                                                                                      (5) 

If 
1 1

n N
n N

                                                                                                        (6) 

0  , there exists an integer N such that 

                                                                       
1

N
  .                                                      (7) 

then from (5), (6) and (7) we get  

1

2n
 . 

Then 
1

lim 0
2n

n →
= . 

Definition: (diverges to infinity) 

The sequence  na  diverges to infinity if for every number M there exists an integer N

such that for all  

nn N a M   . 

If this condition holds we write 

lim n
n

a
→

=  or na → . 
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Similarly if for every number m there exists an integer N such that for all 

nn N a m   , 

then   

lim n
n

a
→

= −  or na →− . 

 

Calculating limits of sequences 

Theorem (1): 

If  lim n
n

a A
→

= , lim n
n

b B
→

=  and k is a constant, then 

(1)  lim
n

k k
→

=  

(2) lim ( )n n
n

a b A B
→

 =   

(3) lim limn n
n n

k a k a
→ →

=  

(4) lim ( )n n
n

a b A B
→

 =   

(5) lim ; 0.n

n
n

a A
B

b B→
=   

Example (2): 

By using Theorem 1, find the following limit: 

(1) 
1 1

lim lim 1 0 0
n nn n→ →

 
− = − = −  = 
 

. 

(2) 

1 11 1 lim 1 lim 1 lim1
1 1 0

lim lim lim 1
1 lim 1 lim 1 1

n n n

n n n

n n

n
n n nn n

nn

n

→ → →

→ → →

→ →

 −    − −−     − −   = = = = = =    
     

   

 

(3) 
2

5 1 1
lim 5 lim lim 5 0 0 0
n n nn nn→ → →

 
=  =   = 

 
. 
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(4) 

6

6 66 6

6 6

6 66

44 7 4 lim 77
4 7 0 7

lim lim lim 7
3 3 1 03 3 1 lim 1

n

n n n

n

n
n nn n

n n

n nn

→

→ → →

→

   −   −−      − − = = = = = −    
+ + +    + +  

    

. 

Theorem (2) (The Sandwich Theorem for sequences) 

Let  na ,  nb  and  nc  be sequences of real numbers. If n n na b c   holds for all n

and if lim limn n
n n

a c L
→ →

= = , then 

lim n
n

b L
→

= . 

Example (3): 

Prove that (by using Theorem 2) 

(1) 
cos

lim 0
n

n

n→
=                  (2) 

1
lim 0

2n
n →

=                        (3) 
1

lim ( 1) 0n

n n→
− = . 

Solution: 

(1) 
cos

lim 0
n

n

n→
=  

1 cos 1
cos 1 1 cos 1

n
n n

n n n
  −    −    

1
lim 0
n n→

= , then from Sandwich Theorem 
cos

lim 0
n

n

n→
= . 

(2) 
1

lim 0
2n

n →
=  

1 1
2 0

2

n

n
n

n
    . 

1
lim 0
n n→

= , then from Sandwich Theorem 
1

lim 0
2n

n →
= . 
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(3) 
1

lim ( 1) 0n

n n→
− =  

1 1 1
( 1)n

n n n
−  −   

1
lim 0
n n→

= , then from Sandwich Theorem 
1

lim ( 1) 0n

n n→
− = . 

Theorem (3): (The Continuous Function Theorem for Sequences) 

Let na  be a sequence of real numbers. If na L→ and if f is a function that is 

continuous at  L and defined at all na then ( ) ( )nf a f L→ . 

 

Example (4): 

 

Show that, applying Theorem 3, 

(1) 
1

1
n

n

+
→                                  (2) 

1/2 1n → . 

Solution: 

(1) 
1

1
n

n

+
→  

Taking 
1

n

n
a

n

+
=  and ( )f x x= . 

1
1

1
lim lim lim 1 1

1
n

n n n

n na L
n→ → →

+
+

= = =  = . 

Then, by Theorem 3,  

1
( ) ( ) 1 1.n

n
f a f L

n

+
→  → =  

(2) 
1/2 1n →  

 Taking 
1

na
n

=  and ( ) 2xf x = . 
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1
lim lim 0 0n
n n

a L
n→ →

= =  = . 

Then, by Theorem 3,  

1/ 0( ) ( ) 2 2 1.n
nf a f L→  → =  

Theorem (4): 

The following six sequences converge to the limits listed below: 

1- 
ln

lim 0
n

n

n→
=  

2- lim 1n

n
n

→
=  

3- 1/lim 1 ( 0)n

n
x x

→
=   

4- lim 0 (| | 1)n

n
x x

→
=   

5- lim 1

n

x

n

x
e

n→

 
+ = 

 
         (any x ) 

6- lim 0
!

n

n

x

n→
=                    (any x ) 

In the formulas (3) and (6), x remains fixed as n → . 

 

Example (5): 

  

By using Theorem 4, find the following limits 

(1) 
2ln

lim
n

n

n→
                             (2) 2lim

n

n
n

→
                                    (3) lim 3n

n
n

→
 

(4) 
1

lim
2

n

n→

 
− 
 

                         (5) 
2

lim

n

n

n

n→

− 
 
 

                              (6) 
100

lim
!

n

n n→
 

Solution: 

(1) 
2ln 2ln ln

lim lim 2 lim 2 0 0
n n n

n n n

n n n→ → →
= = =  =             (from formula 1). 

(2) ( ) ( ) ( )
22 22 2/ 1/ 1/lim lim lim lim 1 1

n n n n

n n n n
n n n n

→ → → →
= = = = =        (from formula 2). 
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(3) ( ) ( )1/ 1/ 1/ 1/ 1/lim 3 lim 3 lim 3 lim 3 lim 1 1 1
n n n n nn

n n n n n
n n n n

→ → → → →
= =  =  =  =   (from formula 3 

with 3x =  and formula 2). 

(4) 
1

lim 0
2

n

n→

 
− = 
 

         (from formula 4 with 
1

2
x = − ) 

(5) 22 2 2
lim lim lim 1

n n n

n n n

n n
e

n n n n

−

→ → →

− − −     
= + = + =     

     
  (from formula 5 with 2x =− ). 

(6) 
100

lim 0
!

n

n n→
=   (from formula 6 with 100x = ). 

 

Bounded Sequences 

Definition: (bounded sequence) 

A sequence  na is called bounded if there exists a real number 0K   such that  

| |na K  for all 1n  . 

Definition:  

(1) A sequence  na is called bounded  from above if there exists a number M such 

that 

na M  for all 1n  . 

          The number M is an upper bound for  na . 

(2) A sequence  na is called bounded  from below if there exists a number m such 

that 

na m  for all 1n  . 

          The number m is an lower bound for  na . 

(3) A sequence  na is called bounded if bounded from above and below. 
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Example (6): 

State whether the following sequence bounded from above, bounded from below, 

bounded or neither ? 

(1) 1,2,3, , ,n                        (2) 
1 2 3

, , , , ,
2 3 4 1

n

n +
 

Solution: 

(1) The sequence 1,2,3, , ,n  is bounded from below and lower bound is 1. This 

sequence is not bounded from above and so the sequence is not bounded. 

(2) 
1 2 3

, , , , ,
2 3 4 1

n

n +
 is bounded from below and lower bound is

1

2
. Also the 

sequence is bounded from above because 

1 1
1

n
n n

n
 +  

+
 

          and has upper bound 1. Since the sequence is bounded from below and bounded    

          from above, the sequence 
1 2 3

, , , , ,
2 3 4 1

n

n +
 is bounded. 

Theorem (5): 

If  the sequence  na converges, then it is bounded. 

 

Increasing and Decreasing Sequences 

Definition: 

(1) A sequence  na is called increasing sequence (nondecreasing sequence) if 

1n na a +  for all 1n  . 

(2) A sequence  na is called decreasing sequence (nonincreasing sequence) if 

1n na a +  for all 1n  . 
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(3) A sequence  na is called monotonic sequence if it is increasing or decreasing 

sequence. 

 

Example (7): 

State whether the following sequence increasing, decreasing or neither ? 

(1) 1,2,3, , ,n                        (2) 
1 2 3

, , , , ,
2 3 4 1

n

n +
     (3) 

1

1

( 1)!
n

n



=

 
 

+ 
 

Solution: 

(1) 1,2,3, , ,n ,  na n=  

11 n nn n a a + +   . 

Then the sequence 1,2,3, , ,n  is increasing. 

(2) 
1 2 3

, , , , ,
2 3 4 1

n

n +
,  

1
n

n
a

n
=

+
 

2 2 2

1

1 ( 1) ( 2) 2 1 2 1
0

2 1 ( 1)( 2) ( 1)( 2) ( 1)( 2)
n n

n n n n n n n n n
a a

n n n n n n n n
+

+ + − + + + − −
− = −  =  

+ + + + + + + +

.
1 10n n n na a a a+ +−    . 

Then the sequence 
1 2 3

, , , , ,
2 3 4 1

n

n +
 is increasing. 

(3) 
1

1

( 1)!
n

n



=

 
 

+ 
 

1

1

( 1)! ( 1)! 1( 2)!
1

1 ( 2)! ( 2)( 1)! 2

( 1)!

n

n

a n nn

a n n n n

n

+ + ++
= = = = 

+ + + +

+
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1
11n

n n

n

a
a a

a

+
+    . 

Then the sequence 
1

1

( 1)!
n

n



=

 
 

+ 
 is decreasing. 

Theorem (6): 

An increasing sequence of real numbers converges if and only if it is bounded 

from above. 
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Infinite Series 

 

An infinite series is the sum of an infinite sequence of numbers 

1 2 3 na a a a+ + + + +  

Definition: 

Given a sequence of numbers  na , an expression of the form 

1 2 3 na a a a+ + + + +  

is an infinite series. The number na is the n th term of the series. The sequence  ns  

defined by 

1 1

2 1 2

3 1 2 3

1 2 3
1

n

n n k
k

s a

s a a

s a a a

s a a a a a
=

=

= +

= + +

= + + + + = 

 

is the sequence of partial sums of the series, the number ns being the n th partial sum.  

Definition: 

If  the sequence of partial sums  ns of the series converges to a limit L , that is, 

lim n
n

s L
→

=  

we say that the series converges and that its sum is L . In this case, we also write  

1 2 3
1

n n
n

a a a a a L


=

+ + + + + = = . 

If the sequence of partial sums  ns  of the series does not converge, we say that the 

series diverges. 
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Example: 

Prove that the series  

1

1 1 1 1 1

1 2 2 3 3 4 ( 1) ( 1)nn n n n



=

+ + +    + +    =
   + +

 . 

Converges and find its sum. 

Solution: 

1

( 1)
na

n n
=

+
 

then the n th term na can be written as 

1 1 1

( 1) 1
na

n n n n
= = −

+ +
 

1 2 3

1 1 1 1 1 1 1
     (1 ) ( ) ( ) ( )

2 2 3 3 4 n 1

1
     1

1

n ns a a a a

n

n

 = + + +     +

= − + − + − +    + −
+

= −
+

 

so 1)
1

1
1(limlim =

+
−=

→→ n
s

n
n

n
. Then the series is convergent and its limit 1. 

Example: 

State whether the series 
1

1

( 1)n

n


−

=

−  convergent or divergent ? 
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Solution: 

  

1 1

2 1 2

3 1 2 3

4 1 2 3 4

1,

1 1 0,

1 1 1 1,

1 1 1 1 0

1 odd

0 even
n

s a

s a a

s a a a

s a a a a

n
s

n

= =

= + = − =

= + + = − + =

= + + + = − + − =


= 


 

then, lim n
n

s
→

 does not exist and so the series is divergent. 

Geometric Series 

Definition: 

Geometric series are series of the form 

2 3 1 1

1

n n

n

a a r a r a r a r a r


− −

=

+ + + + + + =  

in which a and r are fixed real numbers and 0a  . The series can also be written as 

0

n

n

a r


=

 . 

Theorem: 

If | | 1r  , then geometric series 
2 3 1 1

1

n n

n

a a r a r a r a r a r


− −

=

+ + + + + + =  

converges to 
1

a

r−
: 

1

1

, | | 1.
1

n

n

a
a r r

r


−

=

= 
−

  

If | | 1r  , the series diverges. 

Example: 

State whether the following series convergent or divergent . If a series converges, 

find its sum ? 
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(1) 
2 3 1

2 2 2 2
2

3 3 3 3n−
+ + + +    + +                         (2) 

1 1 1

9 27 81
+ + +     

(3) 
0

( 1) 5

4

n

n
n



=

−
                                                      (4) 

1

3

2

n

n



=

 
 
 

  

Solution: 

(1) 
2 3 1 2 3 1 1

1

2 2 2 2 1 1 1 1 1
2 2 1 2 .

3 33 3 3 3 3 3 3n n n
n



− − −
=

 
+ + + +    + +    = + + + +    + +    = 

 
  

This series is a geometric series with 2a =  and 
1

3
r = . 

1
3

r


=    the series is convergent and its sum 
2 6

3
1 1 1 / 3 2

a

r
= = =

− −
. 

(2) 
2 1 1

1

1 1 1 1 1 1 1 1 1
1

9 27 81 9 3 93 3 3n n
n



− −
=

 
+ + +    = + + +    + +    = 

 
 . 

This series is a geometric series with 
1

9
a =  and 

1

3
r = . 

1
3

r


=    the series is convergent and its sum 
1/ 9 1

1 1 1/ 3 6

a

r
= =

− −
. 

(3) 
2 3

0

( 1) 5 5 5 5
5

44 4 4

n

n
n



=

−
= − + − +  

This series is a geometric series with 5a =  and 
1

4
r = − . 

| | | | 1
4 4

r
 

= − =    the series is convergent and its sum 
5

4
1 1 1/ 4

a

r
= =

− +
. 

(4) 

2 3

1

3 3 3 3

2 2 2 2

n

n



=

     
= + + +     

     
  

This series is a geometric series with 
3

2
a =  and 

3

2
r = . 
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3
1

2
r ==    the series is divergent. 

Theorem: 

If  
1

n
n

a


=

 converges, then lim 0n
n

a
→

= . 

The n th-term test for divergence: 

1
n

n

a


=

 diverges if lim n
n

a
→

 fails to exists or is different from zero. 

 

Example: 

The following are all examples of divergent series: 

(1) 2

1n

n


=

  diverges because 2lim limn
n n

a n
→ →

= =  . 

(2) 
1

1

n

n

n



=

+
  diverges because 

1
lim lim 1 0n
n n

n
a

n→ →

+
= =  . 

(3) 
1 2 5n

n

n



=

−

+
  diverges because 

1
lim lim 0

2 5 2
n

n n

n
a

n→ →

−
= = − 

+
. 

(4) 1

1

( 1)n

n


+

=

−  diverges because 1lim lim( 1)n
n

n n
a +

→ →
= −  does not exist. 

Theorem: 

If 
1

n
n

a A


=

=  and 
1

n
n

b B


=

=  are convergent series, then 

(1) 
1 1 1

( )n n n n
n n n

a b a b A B
  

= = =

+ = + = +                  (Sum Rule). 

(2) 
1 1 1

( )n n n n
n n n

a b a b A B
  

= = =

− = − = −                   (Difference Rule). 

(3) 
1 1

n n
n n

ka k a k A
 

= =

= =                                      (any number k ). 
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Remark: 

1- Every nonzero constant multiple of a divergent series diverges. 

2- If 
1

n
n

a


=

  converges and 
1

n
n

b


=

  diverges, then 
1

( )n n
n

a b


=

+  and 
1

( )n n
n

a b


=

−  both 

diverge. 

Note that: 

Remember that 
1

( )n n
n

a b


=

+  can converge when 
1

n
n

a


=

  and 
1

n
n

a


=

  both diverge. For 

example, 
1

1 1 1 1n
n

a


=

= + + + +  and 
1

( 1) ( 1) ( 1) ( 1)n
n

b


=

= − + − + − + − +  diverge, 

whereas 
1

( ) 0 0 0n n
n

a b


=

+ = + + +  converges to 0 . 

 

Example: 

Find the sum of the series 
1

1
1

3 1

6

n

n
n

−

−
=

−
  . 

Solution: 

11 1

1 1 1 1 1 1
1 1 1 1

3 1 3 1 3 1 1 1

66 6 6 6 2 6

nn n

n n n n n n
n n n n

−− −   

− − − − − −
= = = =

  −    
= − = − = −             

    . 

Then two series 
1

1

1

2n
n



−
=

  and 
1

1

1

6n
n



−
=

  converge because 
1

1
2

r =   and 
1

1
6

r =   

respectively. 

1
1

1 1
2

1 1/ 22n
n



−
=

 = =
−

   and 
1

1

1 1 6

1 1/ 6 56n
n



−
=

= =
−

 . 

1

1 1 1 1 1
1 1 1 1

3 1 1 1 1 1 6 4
2

5 56 2 6 2 6

n

n n n n n
n n n n

−   

− − − − −
= = = =

−  
 = − = − = − = 

 
    . 
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Exercises 

 

(1) Determine if the geometric series converges or diverges. If a series converges, 

find its sum. 

(i) 
1

3 3
 3

4 4n−
+ +    + +     

(ii) 

2 1

1
3 3 3

n
e e e

−
   

+ + +   + +      
   

 

(iii) ++++
n)100(

37
0.0037.370  

(iv) 
628

0.628 0.000628
(1000)n

+ +    + +     

(2) State whether the following series convergent or divergent . If a series converges, 

find its sum 

(i) 
n 1

1 3
  

4 4

n n

=

    
+    

     
                             (ii) 

n 1

3 2
 

2 3

n n

=

    
+    

     
  

(iii) 
n

n 1

1 1
  

( 1)8 n n



=

 
+ 

+ 
                          (iv) 

n 1

1 4    
( 1)n n n



=

 
− 

+ 
 . 

(3) State, why the following series is divergent 




= −1n 15

3
  )1(

n

n
 



= +1n )3.0(1

1
   )2(

n
         











= n
n

1
sin    )3(

1n

         


=










−1n 57

2
ln  )4(

n

n
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The integral test 

 

Theorem: (the integral test) 

Let  na be a sequence of positive terms. Suppose that ( )na f n= , where f

is a continuous, positive, decreasing function of x for all x N (N is 

positive integer). Then the series n
n N

a


=

 is 

(1) convergent if the integral ( )
N

f x dx


  is convergent. 

(2) divergent if the integral ( )
N

f x dx


  is divergent. 

Remark: 

(1) The function f is increasing on interval I if '( ) 0f x x I   . 

(2) The function f is decreasing on interval I if '( ) 0f x x I   . 

Example: 

State whether the following series convergent or divergent  

(1) 
1

1

n n



=

                                       (2) 
2

1

1

1n n



= +
  

Solution: 

(1)
1

1

n n



=

  

Let 
1

( )na f n
n

= = . Then 
1

( )f x
x

=  , for all 1x  , is positive and 

continuous.  
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2

1
'( ) '( ) 0 1f x f x x

x
= −     . Then the function f is decreasing. 

Then we can use the integral test. 

     
1

1 1

1
( ) lim lim ln lim ln ln1 lim ln

t
t

t t t t
f x dx dx x t t

x



→ → → →
= = = − = =    

then the integral diverges and so the series 
1

1

n n



=

  is divergent.  

(2) 
2

1

1

1n n



= +
  

Let 
2

1
( )

1
na f n

n
= =

+
. Then 

2

1
( )

1
f x

x
=

+
 , for all 1x  , is positive and 

continuous.  

( )
2

2

2
'( ) '( ) 0 1

1

x
f x f x x

x
= −    

+
. Then the function f is 

decreasing. Then we can use the integral test. 

1 1 1 1

2 1
1 1

1
( ) lim lim tan lim tan tan 1 lim tan

41

( )
2 4 4

t
t

t t t t
f x dx dx x t t

x



  


− − − −

→ → → →

    = = = − = −    +  

= − =

 

 then the integral converges and so the series 
2

1

1

1n n



= +
  is convergent. 

Definition (P-series) 

The series 
1

1
p

n n



=

  is 

(1) convergent if 1p  . 

(2) divergent if 1p  . 
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Example: 

(1)  The series 
2

1

1

n n



=

  converges because 2 1p =  . 

(2) The series 
3/2

1

1

n n



=

  converges because 3 / 2 1p =  . 

(3) The series 
1

1

n n



=

  diverges because 1/ 2 1p =  . 

 

Exercises 

Which of the series converge, and which diverge 

(1) 
1

1

10n
n



=

                                 (2) 
1

n

n

e


−

=

                                  (3) 
1

1

n n n



=

  

(4) 
2

ln

n

n

n



=

                                (5) 
( )1

1

1n n n



= +
                     (6) 

1

2
1

tan

1n

n

n

−

= +
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The comparison test 

 

Theorem: (The comparison test) 

Let 
1

n
n

a


=

 , 
1

n
n

c


=

  and 
1

n
n

d


=

  be series with nonnegative terms. Suppose that 

for some integral N  

n n nd a c    for all  n N . 

(i) If 
1

n
n

c


=

  converges, then 
1

n
n

a


=

  also converges. 

(ii) If 
1

n
n

d


=

  diverges, then 
1

n
n

a


=

  also diverges. 

Example: 

Which of the series converge, and which diverge 

(1) 
1

5

5 1n n



= −
                                   (2) 

2

1

lnn n



=

                                 (3) 
3

1

ln

n

n

n



=

  

Solution: 

(1) 
1

5

5 1n n



= −
  

1 1 5 5 1 5
5 5 1 1

5 5 1 5 5 1 5 1
n n n

n n n n n n
 −        

− − −
 

1

1

n n



=

  diverges because 1p =  (p-series), then 
1

5

5 1n n



= −
  diverges.  

(2) 
2

1

lnn n



=
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1 1
ln 2 2

ln
n n n n

n n
        

2

1

n n



=

  diverges because 1p =  (p-series), then 
2

1

lnn n



=

  diverges. 

(3) 
3

1

ln

n

n

n



=

  

3 3 3 2

ln ln 1
ln 1 1

n n n
n n n n

n n n n
          

2
1

1

n n



=

  converges because 2 1p =   (p-series), then 
3

1

ln

n

n

n



=

  converges. 

Theorem: (Limit comparison test) 

Suppose that 0na   and 0nb   for all n N (N  an integer). 

1. If lim 0n

n
n

a
c

b→
=  , then 

1
n

n

a


=

  and 
1

n
n

b


=

  both converge or both diverge. 

2. If lim 0n

n
n

a

b→
= , and 

1
n

n

b


=

 converges, then 
1

n
n

a


=

  converges. 

3. If lim n

n
n

a

b→
=  , and 

1
n

n

b


=

 diverges, then 
1

n
n

a


=

  diverges. 

Example: 

Which of the following series converge, and which diverge 

(1) 
2

1

2 1

2 1n

n

n n



=

+

+ +
                  (2) 

3 2
1

3 1

4 2n

n

n n



=

+

+ −
               (3) 

2 7/2
1

8

5n

n n

n n



=

+

+ +
  

(4) 
1

1

2 1n
n



= −
                           (5) 

2
2

1 ln

5n

n n

n



=

+

+
                    (6) 

2

2
1

3n 5
 
2 ( 1)n

n

n

n



=

+

+
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Solution: 

(1) 
2

1

2 1

2 1n

n

n n



=

+

+ +
  

2

2 1

2 1
n

n
a

n n

+
=

+ +
. Consider 

1
nb

n
= . 

The series 
1 1

1
n

n n

b
n

 

= =

=   is divergent series because 1p =  (p-series). 

22

2

2

2 1 1
2

2 22 1lim lim lim lim 2 0
1 2 1 12 1 1

n

n n n n
n

n
a n nn n n
b n n

n n n

→ → → →

+
+

++ += = = = = 
+ + + +

 

1 1

1
n

n n

b
n

 

= =

=   is divergent, then 
2

1

2 1

2 1n

n

n n



=

+

+ +
 is divergent. 

(2) 
3 2

1

3 1

4 2n

n

n n



=

+

+ −
  

3 2

3 1

4 2
n

n
a

n n

+
=

+ −
. Consider 

2

1
nb

n
= . 

The series 
2

1 1

1
n

n n

b
n

 

= =

=   is convergent series because 2 1p =   (p-series). 

3 23 2

3 2

2 3

3 1 1
3

3 34 2lim lim lim lim 0
1 1 2 44 2 4

n

n n n n
n

n
a n nn n n
b n n

nn n

→ → → →

+
+

++ −= = = = 
+ − + −

 

2
1 1

1
n

n n

b
n

 

= =

=   is convergent, then 
3 2

1

3 1

4 2n

n

n n



=

+

+ −
 is convergent. 

(3) 
2 7/2

1

8

5n

n n

n n



=

+

+ +
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2 7/2

8

5
n

n n
a

n n

+
=

+ +
. Consider 

5/2

1
nb

n
= . 

The series 
5/2

1 1

1
n

n n

b
n

 

= =

=   is convergent series because 5 / 2 1p =   (p-

series). 

7/2 32 7/2 1/2

2 7/2

5/2 7/2 3/2

8 1
8

8 85lim lim lim lim 8 0
1 5 1 15 1

n

n n n n
n

n n

a n nn n n
b n n

n n n

→ → → →

+
+

++ += = = = = 
+ + + +

 

5/2
1 1

1
n

n n

b
n

 

= =

=   is convergent, then 
2 7/2

1

8

5n

n n

n n



=

+

+ +
 is convergent. 

(4) 
1

1

2 1n
n



= −
  

1

2 1
n n

a =
−

. Consider 
1

2
n n

b = . 

The series 
1 1

1

2
n n

n n

b
 

= =

=   (geometric series) is convergent series because 

1
1

2
r =  . 

1
2 1 12 1lim lim lim lim 1 0

1 1 1 02 1 1
2 2

nn
n

n
n n n n

n
n n

a

b→ → → →

−= = = = = 
−− −

 

1 1

1

2
n n

n n

b
 

= =

=   is convergent, then 
1

1

2 1n
n



= −
 is convergent. 

(5) 
2

2

1 ln

5n

n n

n



=

+

+
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2

1 ln

5
n

n n
a

n

+
=

+
. Consider 

1
nb

n
= . 

The series 
2 2

1
n

n n

b
n

 

= =

=   is divergent series because 1p =  (p-series). 

22

2

2

1 ln 1
ln

ln5lim lim lim lim
1 55 1

n

n n n n
n

n n
n

a n n nn n
b n

n n

→ → → →

+
+

++= = = = 
+ +

 

2 1

1
n

n n

b
n

 

= =

=   is divergent, then 
2

2

1 ln

5n

n n

n



=

+

+
 is divergent. 

(6) 
2

2
1

3n 5
 
2 ( 1)n

n

n

n



=

+

+
  

2

2

3n 5

2 ( 1)
n n

n
a

n

+
=

+
. Consider 

1

2
n n

b = . 

The series 
1 1

1

2
n n

n n

b
 

= =

=   (geometric series) is convergent series because 

1
1

2
r =  . 

2

22

2

2

3n 5 5
3

3n 5 32 ( 1)
lim lim lim lim 3 0

1 1 11 1
2

n
n

n n n n
n

n

n

a nn n
b n

n

→ → → →

+
+

++
= = = = = 

+ +

 

1 1

1

2
n n

n n

b
 

= =

=   is convergent, then 
2

2
1

3n 5
 
2 ( 1)n

n

n

n



=

+

+
 is convergent. 
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Exercises 

 

Which of the following series converge, and which diverge 




= +1n 4

n
  )1(

n
                               



= −2n
3

 
54

1
  )2(

nn
                    



= +

+

1n
3

2

1

n2n
  )3(

n
     




= ++

++

1n
48

35

22

14
  )4(

nn

nn
                 



= +1n 31

1
  )5(

n
                               



=1n
2

1
 sin  )6(
n

 




=1n

1
an   )7(

n
t                                



=2n
4

ln
  )8(

n

n
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The Ratio and Root Tests 

 

Theorem: (The ratio test) 

Let 
1

n
n

a


=

 be a series with positive terms and suppose that 

1lim n

n
n

a
L

a

+

→
= . 

Then 

(1) The series converges if 1L  . 

(2) The series diverges if 1L   or L is an infinite. 

(3) The test fails if 1L = . 

Example: 

Which of the following series converge, and which diverge 

(1) 
n

n 1

3
 

!n



=

                (2) 


=1n

n

!
  
n

n
             (3) 

n 2

n 1

3 ( !)
 

2 !

n

n



=

         (4) 
n

n 1

2 5
 

3n



=

+
  

Solution: 

(1)
n

n 1

3
 

!n



=

  

1

1

3 3 3

3( 1)! ( 1) !
lim lim lim lim 0 1

13 3

! !

n n

n
n n

n n n n
n

a n n n

a n

n n

+

+

→ → → →



+ + 
= = = = 

+
 

then the series 
n

n 1

3
 

!n



=

  converges. 
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(2) 
n

n 1

  
!

n

n



=

  

1 1

1
n n n

( 1) ( 1)

( 1) 1( 1)! ( 1) !
lim lim lim lim lim

! !

n n

nn
n

n n n n n
n

n n

a n nn n n

a nn n n

n n

+ +

+

→ → → → →

+ +

+ ++ +   
= = = =  

 
   

              
1 1

lim lim 1 1

n n

n n

n
e

n n n→ →

   
= + = + =    

   
             

then the series 
n

n 1

  
!

n

n



=

  diverges. 

(3) 
n 2

n 1

3 ( !)
 

2 !

n

n



=

  

n+1 2 n 2 2

2
1

n 2 n 2

3 (( 1)!) 3 3 ( 1) ( !)

3( 1)(2 2)! (2 2)(2 1) 2 !
lim lim lim lim

(2 2)(2 1)3 ( !) 3 ( !)

2 ! 2 !

n

n n n n
n

n n n

a nn n n n

a n nn n

n n

+

→ → → →

+  +

++ + + 
= = =

+ +
 

                
23( 1) ( 1) 3 1 3

lim lim 3 lim 1
2( 1)(2 1) 2(2 1) 2 2 1 4n n n

n n n

n n n n→ → →

+ + +
= = = = 

+ + + +
 

then the series 
n 2

n 1

3 ( !)
 

2 !

n

n



=

  converges. 

(4) 
n

n 1

2 5
 

3n



=

+
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n+1 n+1

n+11 n n n
1

n n

n n

2 5 2 5 5
2

1 2 5 1 1 1 2 23 2 2 2lim lim lim lim lim 1
5 53 3 3 3 1 32 5 2 5 1 1
2 23

n
n

n n n n n
n

n

a

a

+
+

→ → → → →

+
+ +

+
= = = = = = 

+ + + +

 

then the series 
n

n 1

2 5
 

3n



=

+
  converges. 

Theorem: (The root test) 

Let 
1

n
n

a


=

 be a series with positive terms and suppose that 

lim n
n

n
a L

→
= . 

Then 

(1) The series converges if 1L  . 

(2) The series diverges if 1L   or L is an infinite. 

(3) The test fails if 1L = . 

Example: 

Which of the following series converge, and which diverge 

(1) 
2

n 1

n
 
2n



=

                              (2) 
n

3
n 1

2
 
n



=

                                (3) 
n 1

1
 

1

n

n



=

 
 

+ 
      

Solution: 

(1) 
2

n 1

n
 
2n



=

   

2 2 2
2 2n ( ) 1 1 1

lim lim lim lim (lim ) (1) 1
2 2 2 2 22

n n
nn n

n n
n n n n n

n n
a n

→ → → → →
= = = = =  =     

then the series 
2

n 1

n
 
2n



=

  converges. 
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(2) 
n

3
n 1

2
 
n



=

  

n

3 33 33

2 2 2 1 1
lim lim lim lim 2 2 2 1

1( ) ( lim )
n n

n n nnn n n n

n

a
n n nn→ → → →

→

= = = = =  =     

then the series 
n

3
n 1

2
 
n



=

  diverges. 

(3) 
n 1

1
 

1

n

n



=

 
 

+ 
  

1 1
lim lim lim 0 1

1 1

n

n n
n

n n n
a

n n→ → →

 
= = =  

+ + 
   

then the series 
n 1

1
 

1

n

n



=

 
 

+ 
  converges. 
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Exercises 

 

Which of the following series converge, and which diverge 




=

+

1n 2

13
  )1(

n

n
                         



=
+

1n
1)3( 

5
   )2(

n

n

n
                              



=1n

n

!

(100)
  )3(

n
    




=1n

!
   )4(

ne

n
                         



= +1n
5)1( 

!
   )5(

n

n
                             



=










+1n 12 
   )6(

n

n

n
 




=1n

1
  )7(

nn
                           



=

+

2n

1

) (ln 

5
   )8(

n

n

n
                               



=1n 3
  )9(

n

n
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Alternating Series, Absolute and Conditional Convergence 
 

Theorem: The alternating series test (Leibniz’s test) 

The series 

1
1 2 3 4

1

( 1)n
n

n

u u u u u


+

=

− = − + − +  

converges if all three of the following conditions are satisfied 

1- The nu ’s are all positive. 

2- The positive nu ’s are decreasing: 

1n nu u +  for all n . 

3- lim 0n
n

u
→

= . 

Example: 

Which of the following series converge, and which diverge 

(1) 1

1

1
( 1)n

n n


+

=

−                                  (2) 1

2
4

10
( 1)

16

n

n

n

n


+

=

−
+

  

Solution: 

(1) 1

1

1
( 1)n

n n


+

=

−  

1
, 1nu n

n
=   

(i) nu ’s are all positive 

(ii) if 
2

1 1 1
( ) ( ) , 1 '( ) 0 1f n f x x f x x

n x x
=  =   = −     

then ( )f x is decreasing and so nu is decreasing. 
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(iii) 
1

lim lim 0n
n n

u
n→ →

= =  

then all three conditions are satisfied and so 1

1

1
( 1)n

n n


+

=

−  converges.  

(2) 1

2
4

10
( 1)

16

n

n

n

n


+

=

−
+

  

2

10
, 4

16
n

n
u n

n
= 

+
 

(i) nu ’s are all positive 

(ii) if 
2

2 2 2 2

10 10 10( 16) 2 (10 )
( ) ( ) , 4 '( )

16 16 ( 16)

n x x x x
f n f x x f x

n x x

+ −
=  =   =

+ + +
2

2 2

10(16 )
'( ) 0 4

( 16)

x
f x x

x

−
=   

+
. 

then ( )f x is decreasing and so nu is decreasing. 

(iii)
2

2

10
10 0

lim lim lim 0
16 116 1

n
n n n

n nu
n

n

→ → →
= = = =

+ +

 

then all three conditions are satisfied and so 1

2
4

10
( 1)

16

n

n

n

n


+

=

−
+

  converges. 

Definition: 

A series
1

n
n

a


=

 converges absolutely (is absolutely convergent) is if the series 

1
n

n

a


=

 converges . 
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Theorem: (The absolute convergence test) 

If 
1

n
n

a


=

 converges, then 
1

n
n

a


=

 converges. 

Remark: 

The converse statement of the above theorem is false. For example; 

in above example we show that 1

1

1
( 1)n

n n


+

=

−  is converges, but the series 

1

1 1

1 1
( 1)n

n nn n

 
+

= =

− =   is divergent (p-series and 1p = ). 

Example: 

Prove that the series 1

2
1

1
( 1)n

n n


+

=

− is absolutely convergent. 

Solution: 

1

2 2
1 1

1 1
( 1)n

n nn n

 
+

= =

− =   

2
1

1

n n



=

  is convergent because 2 1p =  (p-series), then the series 

1

2
1

1
( 1)n

n n


+

=

−  is convergent and so 1

2
1

1
( 1)n

n n


+

=

− is absolutely convergent. 

Definition: 

The series 
1

n
n

a


=

  is conditional convergence if the series 
1

n
n

a


=

 converges but 

the series 
1

n
n

a


=

  diverges. 
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Example: 

Prove that the series 1

1

1
( 1)n

n n


+

=

−  is conditional convergence. 

Solution: 

1

1 1

1 1
( 1)n

n nn n

 
+

= =

− =   is divergent because 
1

1
2

p =   (p-series). 

Then the series is not absolutely convergent. Now we discuss the 

convergence of  1

1

1
( 1)n

n n


+

=

−  

1
, 1nu n

n
=   

(i) nu ’s are all positive 

(ii) if 
3/2

1 1 1 1
( ) ( ) , 1 '( ) 0 1

2
f n f x x f x x

xn x
=  =   = −     

then ( )f x is decreasing and so nu is decreasing. 

(iii) 
1

lim lim 0n
n n

u
n→ →

= =  

then all three conditions are satisfied and so 1

1

1
( 1)n

n n


+

=

−  converges. Then 

the series 1

1

1
( 1)n

n n


+

=

−  is conditional convergence. 
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Exercises 

 

State whether the following series absolutely convergence, conditional 

convergence or divergent ? 




=

−

+
−

1n
2

1

7

1
)1(  )1(

n

n                                         ( )


=

−+−
1n

e1 )1(  )2( nn          




= −

+
−

1n
2n

2n

1e

1e
)1(  )3( n                                              



=

−

+
−

1n

1

12

1
)1(  )4(

n

n                      




=

−

+
−

1n

1

1)( ln

1
)1(  )5(

n

n                                       


=

−
2n  ln

)1(  )6(
n

nn                   




= +
−

1n
3 1

5
)1(  )7(

n

n                                                 


=

−

1n !

)10(
  )8(

n

n

                         




=

−
1n

1
sin )1(  )9(

n
nn                                                



= +

+
−

1n 31

41
)1(  )10(

n

n
n  
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Power Series 

 

Definition: 

A power series about 0x =  is a series of the form 

                         2
0 1 2

0

n n
n n

n

c x c c x c x c x


=

= + + + + +                                              (1) 

A power series about x a=  is a series of the form 

                   
2

0 1 2
0

( ) ( ) ( ) ( )n n
n n

n

c x a c c x a c x a c x a


=

− = + − + − + + − +                  (2) 

in which the center a and the coefficients  0 1 2, , , , ,nc c c c  are constants. 

Remark: 

Recall that the Ratio Test applies to series with nonnegative terms. 

 

Example: 

For what values of x do the following power series converge ? 

(1) 2

0

1n n

n

x x x x


=

= + + + + +  

(2) 

2

2

0

1 1 1 1
( 2) 1 ( 2) ( 2) ( 2)

2 2 2 2

n n

n n

n

x x x x


=

     
− − = − − + − + + − − +     
     

  

(3) 
2 3 4

1 1

1

( 1) ( 1)
2 3 4

n n
n n

n

x x x x x
x

n n


− −

=

− = − + − + + − +  

(4) 
2 1 3 5 7 2 1

1 1

1

( 1) ( 1)
2 1 3 5 7 2 1

n n
n n

n

x x x x x
x

n n

− −
− −

=

− = − + − + + − +
− −

  

(5) 
2

0

1
! 1! 2! !

n n

n

x x x x

n n



=

= + + + + +  

(6) 2

0

! 1 1! 2! !n n

n

n x x x n x


=

= + + + + +  
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Solution: 

(1) 2

0

1n n

n

x x x x


=

= + + + + +  

This is geometric series with first term 1 and ratio r x= , then the series converges for 

| | 1 1 1x x  −    and its sum 
1

1 1

a

r x
=

− −
. 

(2) 

2

2

0

1 1 1 1
( 2) 1 ( 2) ( 2) ( 2)

2 2 2 2

n n

n n

n

x x x x


=

     
− − = − − + − + + − − +     
     

  

This is geometric series with first term 1 and ratio 
1

( 2)
2

r x= − − , then the series 

converges for 
1

( 2) 1 2 2 2 2 2 0 4
2

x x x x− −   −   −  −      and its sum 

1 2 2

11 2 ( 2)
1 ( 2)

2

a

r x x
x

= = =
− + −

+ −

. 

(3) 
2 3 4

1 1

1

( 1) ( 1)
2 3 4

n n
n n

n

x x x x x
x

n n


− −

=

− = − + − + + − +  

Apply the ratio test to the series 1

1 1 1

( 1)
n n

n
n

n n n

x x
u

n n

  
−

= = =

= − =    

1

1 | |1lim lim lim lim | |
1 1

n

n
n

n n n n
n

x
u x n x nn x
u n nx

n

+

+

→ → → →

+= = = =
+ +

 

The series 1

1 1 1

( 1)
n n

n
n

n n n

x x
u

n n

  
−

= = =

= − =    is converges for | | 1x  . Then the series 

1

1

( 1)
n

n

n

x

n


−

=

−  is absolutely convergence for | | 1x  . 
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The series 1

1

( 1)
n

n

n

x

n


−

=

−  diverges for | | 1x  , because the condition 

lim
n

n

x

n→


=


 ( lim n

n
x

→
=   if | | 1x  ) 

ln
lim lim 0

1

n n

n n

x x x

n→ →
 = =  . 

If 1x = , the alternating series 1

1

1
( 1)n

n n


−

=

−  converges because it satisfies all three 

conditions of the alternating series test. 

If 1x =− , the series 1 2 1 2 1

1 1 1 1

( 1) 1 1 1
( 1) ( 1) ( 1) ( 1)

n
n n n

n n n nn n n n

   
− − −

= = = =

−
− = − = − − = −     

diverges because, the series 
1

1

n n



=

  diverges (p-series). 

Then from above the series 1

1

( 1)
n

n

n

x

n


−

=

−  converges for 1 1x−   . 

(4) 
2 1 3 5 7 2 1

1 1

1

( 1) ( 1)
2 1 3 5 7 2 1

n n
n n

n

x x x x x
x

n n

− −
− −

=

− = − + − + + − +
− −

  

Apply the ratio test to the series 
2 1 2 1

1

1 1 1

( 1)
2 1 2 1

n n
n

n
n n n

x x
u

n n

− −  
−

= = =

= − =
− −

    

2 1

2 2
21

2 1

(2 1) (2 1)2 1lim lim lim lim
2 1 2 1

2 1

n

n
n

n n n n
n

x
u x n x nn x
u n nx

n

+

+
−

→ → → →

− −+= = = =
+ +

−

 

The series 
2 1 2 1

1

1 1 1

( 1)
2 1 2 1

n n
n

n
n n n

x x
u

n n

− −  
−

= = =

= − =
− −

    is converges for 2 1 | | 1x x   . 

Then the series 
2 1

1

1

( 1)
2 1

n
n

n

x

n

−
−

=

−
−

  is absolutely convergence for | | 1x  . 
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The series 
2 1

1

1

( 1)
2 1

n
n

n

x

n

−
−

=

−
−

  diverges for 2 1 | | 1x x   , because the condition 

2 1

lim
2 1

n

n

x

n

−

→


=

− 
 (

2 1lim n

n
x −

→
=   if | | 1x  ) 

2 1 2 1
2 1(2)ln

lim lim lim ln 0
2 1 2

n n
n

n n n

x x x
x x

n

− −
−

→ → →
 = = = 

−
. 

If 1x = , the alternating series 1

1

1
( 1)

2 1

n

n n


−

=

−
−

  converges because it satisfies all three 

conditions of the alternating series test. 

If 1x =− , the series 
2 1

1 3 2 2 2

1 1 1 1

( 1) 1 1 1
( 1) ( 1) ( 1) ( 1) ( 1)

2 1 2 1 2 1 2 1

n
n n n n n

n n n nn n n n

−   
− − −

= = = =

−
− = − = − − = −

− − − −
     

converges because it satisfies all three conditions of the alternating series test. 

Then from above the series 
2 1

1

1

( 1)
2 1

n
n

n

x

n

−
−

=

−
−

  converges for 1 1x−   . 

(5) 
2

0

1
! 1! 2! !

n n

n

x x x x

n n



=

= + + + + +  

Apply the ratio test to the series 
0 0 !

n

n
n n

x
u

n

 

= =

=   

1

1 | |( 1)!
lim lim lim lim 0

1 1

!

n

n
n

n n n n
n

x

u x xn

u n nx

n

+

+

→ → → →

+
= = = =

+ +
 for every x . 

Then the series 
0 !

n

n

x

n



=

  is absolutely convergence for all x . 

(6) 
2

0

! 1 1! 2! !n n

n

n x x x n x


=

= + + + + +  
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Apply the ratio test to the series 
0 0

! n
n

n n

u n x
 

= =

=   

1
1 ( 1)!

lim lim lim ( 1) lim( 1) | |
!

n
n

n
n n n n

n

u n x
n x n x

u n x

+
+

→ → → →

+
= = + = + =   for every x except 

0x = . 

Then the series 
0

! n

n

n x


=

  diverges for all x except 0x = . 

The Radius of Convergence of a Power Series 
 

Theorem: 

The convergence of the series 
0

( )n
n

n

c x a


=

−  is described by one of the following three 

cases: 

1- There is a positive number R such that the series diverges for x with | |x a R− 

but converges absolutely for x with | |x a R−  . The series may or may not 

converge at either of the endpoints x a R= − and x a R= + . 

2- The series converges absolutely for every x  (R =). 

3- The series converges at x a= and diverges elsewhere ( 0R = ). 

R is called the radius of convergence of the power series, and the interval of radius R  

centered at x a=  is called the interval of convergence. 

 

Remark: 

The interval of convergence may be open, closed, or half-open, depending on the 

particular series. At  points x with | |x a R−  , the series converges absolutely. If the 

series converges for all values of x , we say its radius of convergence is infinite. If it 

converges only at x a= , we say its radius of convergence is zero. 

 

Example: 

Find the series’ radius and interval of convergence of the following power series. 

(1) 
0

( 5)n

n

x


=

+         (2) 
1

(3 2)n

n

x

n



=

−
       (3) 

0

( 2)

10

n

n
n

x

=

−
      (4) 

1 3

n

n
n

x

n n



=
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(5) 
1

( 1)n

n

x

n



=

−
         (6) 

0

( 1)

!

n n

n

x

n



=

−
        (7) 

1

n n

n

n x


=

 . 

 

Solution: 

(1) 2 2

0

( 5) 1 ( 5) ( 5) ( 5)n

n

x x x x


=

+ = + + + + + + +  

This is geometric series with first term 1 and ratio 5r x= + , then the series converges 

for | 5 | 1 ( 1) 1 5 1 6 4x R x x+  =  −  +   −   −  . 

Then the radius 1R = and the interval of convergence is 6 4x−   − . 

(2) 
1

(3 2)n

n

x

n



=

−
  

Apply the ratio test to the series 
1 1

(3 2)n

n
n n

x
u

n

 

= =

−
=   

1

1

(3 2)
(3 2)1lim lim lim | 3 2 | lim | 3 2 |
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n

x
u x n nn x x
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The series 
1 1

(3 2)n

n
n n

x
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= =

−
=   is converges for | 3 2 | 1x −  . Then the series 

1

(3 2)n

n

x

n



=

−
  is absolutely convergence for | 3 2 | 1x −  . 

2 1 1 1 2 1 1
| 3 2 | 1 | | ( ) 1

3 3 3 3 3 3 3
x x R x x−   −  =  −  −     . 

When 
1

3
x = , the series 

1 1 1 1

1
(3 2)

(3 2) (1 2) ( 1)3

n
n n n

n n n n

x

n n n n

   

= = = =

−
− − −

= = =     

converges . 

When 1x = , the series 
1 1 1 1

(3 2) (3 2) (1) 1n n n

n n n n

x

n n n n

   

= = = =

− −
= = =     
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diverges . 

Then the radius is 
1

3
R =  and the interval of convergence is 

1
1

3
x  . 

(3) 
2 3

2 3
0

( 2) ( 2) ( 2) ( 2)
1

1010 10 10

n

n
n

x x x x

=

− − − −
= + + + +  

This is geometric series with first term 1 and ratio 
( 2)

10

x
r

−
= , then the series converges 

for 
( 2)

| | 1 | 2 | 10 ( 10) 10 2 10 8 12
10

x
x R x x

−
  −  =  −  −   −    . 

Then the radius 10R = and the interval of convergence is 8 12x−   . 

 (4) 
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n n
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Apply the ratio test to the series 
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lim lim lim lim

3 1 3 1 1 31n n n n

x n n x n n x
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+ + ++
 

The series 
1 1 3
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= =

=   is converges for 
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1
3

x
 . Then the series 

1 3

n

n
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  is 

absolutely convergence for 
| |

1 | | 3 ( 3) 3 3
3

x
x R x   =  −   . 

When 3x = − , the series 
1 1 1 1

( 3) ( 1) (3) ( 1)

3 3 3

n n n n n

n n n
n n n n

x

n n n n n n n n

   

= = = =

− − −
= = =     is 

converges because it satisfies all three conditions of the alternating series test. 
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When 3x = , the series 
3/2

1 1 1 1

3 1 1

3 3

n n

n n
n n n n

x

nn n n n n n

   

= = = =

= = =     is converges 

because 
3

1
2

p =   ( p -series). Then radius is 3R =  and the interval of convergence is 

3 3x−   . 

(5) 
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Apply the ratio test to the series 
1 1
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n
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The series 
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x
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−
=   is converges for | 1| 1x −  . Then the series 

1 3
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is absolutely convergence for | 1| 1 ( 1) 1 1 1 0 2x R x x−  =  −  −     . 

When 0x = , the series 
1 1

( 1) ( 1)n n
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n n

 

= =

− −
=   is converges because it satisfies all three 

conditions of the alternating series test. 

When 2x = , the series 
1 1 1 1

( 1) (2 1) (1) 1n n n

n n n n
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n n n n

   

= = = =

− −
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Apply the ratio test to the series 
0 0 0
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−
  is absolutely convergence for all x . Then the radius is 

R =  and the series converges for all x . 
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Apply the ratio test to the series 
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Then the series 
1

n n

n

n x


=

  diverges for all x except 0x = . Then the radius is 0R =  and 

the series converges only for 0x = . 



Chapter 1

LINEAR EQUATIONS

1.1 Introduction to linear equations

A linear equation in n unknowns x1, x2, · · · , xn is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, a2, . . . , an, b are given real numbers.

For example, with x and y instead of x1 and x2, the linear equation
2x+ 3y = 6 describes the line passing through the points (3, 0) and (0, 2).

Similarly, with x, y and z instead of x1, x2 and x3, the linear equa-
tion 2x + 3y + 4z = 12 describes the plane passing through the points
(6, 0, 0), (0, 4, 0), (0, 0, 3).

A system of m linear equations in n unknowns x1, x2, · · · , xn is a family
of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

We wish to determine if such a system has a solution, that is to find
out if there exist numbers x1, x2, · · · , xn which satisfy each of the equations
simultaneously. We say that the system is consistent if it has a solution.
Otherwise the system is called inconsistent.

1
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Note that the above system can be written concisely as

n
∑

j=1

aijxj = bi, i = 1, 2, · · · ,m.

The matrix










a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn











is called the coefficient matrix of the system, while the matrix











a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

am1 am2 · · · amn bm











is called the augmented matrix of the system.

Geometrically, solving a system of linear equations in two (or three)
unknowns is equivalent to determining whether or not a family of lines (or
planes) has a common point of intersection.

EXAMPLE 1.1.1 Solve the equation

2x+ 3y = 6.

Solution. The equation 2x + 3y = 6 is equivalent to 2x = 6 − 3y or
x = 3− 3

2y, where y is arbitrary. So there are infinitely many solutions.

EXAMPLE 1.1.2 Solve the system

x+ y + z = 1

x− y + z = 0.

Solution. We subtract the second equation from the first, to get 2y = 1
and y = 1

2 . Then x = y − z = 1
2 − z, where z is arbitrary. Again there are

infinitely many solutions.

EXAMPLE 1.1.3 Find a polynomial of the form y = a0+a1x+a2x
2+a3x

3

which passes through the points (−3, −2), (−1, 2), (1, 5), (2, 1).
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Solution. When x has the values −3, −1, 1, 2, then y takes corresponding
values −2, 2, 5, 1 and we get four equations in the unknowns a0, a1, a2, a3:

a0 − 3a1 + 9a2 − 27a3 = −2
a0 − a1 + a2 − a3 = 2

a0 + a1 + a2 + a3 = 5

a0 + 2a1 + 4a2 + 8a3 = 1.

This system has the unique solution a0 = 93/20, a1 = 221/120, a2 =
−23/20,
a3 = −41/120. So the required polynomial is

y =
93

20
+
221

120
x− 23

20
x2 − 41

120
x3.

In [26, pages 33–35] there are examples of systems of linear equations
which arise from simple electrical networks using Kirchhoff’s laws for elec-
trical circuits.

Solving a system consisting of a single linear equation is easy. However if
we are dealing with two or more equations, it is desirable to have a systematic
method of determining if the system is consistent and to find all solutions.

Instead of restricting ourselves to linear equations with rational or real
coefficients, our theory goes over to the more general case where the coef-
ficients belong to an arbitrary field. A field F is a set F which possesses
operations of addition and multiplication which satisfy the familiar rules of
rational arithmetic. There are ten basic properties that a field must have:

THE FIELD AXIOMS.

1. (a+ b) + c = a+ (b+ c) for all a, b, c in F ;

2. (ab)c = a(bc) for all a, b, c in F ;

3. a+ b = b+ a for all a, b in F ;

4. ab = ba for all a, b in F ;

5. there exists an element 0 in F such that 0 + a = a for all a in F ;

6. there exists an element 1 in F such that 1a = a for all a in F ;
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7. to every a in F , there corresponds an additive inverse −a in F , satis-
fying

a+ (−a) = 0;

8. to every non–zero a in F , there corresponds a multiplicative inverse
a−1 in F , satisfying

aa−1 = 1;

9. a(b+ c) = ab+ ac for all a, b, c in F ;

10. 0 6= 1.

With standard definitions such as a − b = a + (−b) and a

b
= ab−1 for

b 6= 0, we have the following familiar rules:

−(a+ b) = (−a) + (−b), (ab)−1 = a−1b−1;

−(−a) = a, (a−1)−1 = a;

−(a− b) = b− a, (
a

b
)−1 =

b

a
;

a

b
+
c

d
=

ad+ bc

bd
;

a

b

c

d
=

ac

bd
;

ab

ac
=

b

c
,

a
(

b
c

) =
ac

b
;

−(ab) = (−a)b = a(−b);
−
(a

b

)

=
−a
b
=

a

−b ;
0a = 0;

(−a)−1 = −(a−1).

Fields which have only finitely many elements are of great interest in
many parts of mathematics and its applications, for example to coding the-
ory. It is easy to construct fields containing exactly p elements, where p is
a prime number. First we must explain the idea of modular addition and
modular multiplication. If a is an integer, we define a (mod p) to be the
least remainder on dividing a by p: That is, if a = bp+ r, where b and r are
integers and 0 ≤ r < p, then a (mod p) = r.

For example, −1 (mod 2) = 1, 3 (mod 3) = 0, 5 (mod 3) = 2.
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Then addition and multiplication mod p are defined by

a⊕ b = (a+ b) (mod p)

a⊗ b = (ab) (mod p).

For example, with p = 7, we have 3 ⊕ 4 = 7 (mod 7) = 0 and 3 ⊗ 5 =
15 (mod 7) = 1. Here are the complete addition and multiplication tables
mod 7:

⊕ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

⊗ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

If we now let Zp = {0, 1, . . . , p− 1}, then it can be proved that Zp forms
a field under the operations of modular addition and multiplication mod p.
For example, the additive inverse of 3 in Z7 is 4, so we write −3 = 4 when
calculating in Z7. Also the multiplicative inverse of 3 in Z7 is 5 , so we write
3−1 = 5 when calculating in Z7.

In practice, we write a⊕b and a⊗b as a+b and ab or a×b when dealing
with linear equations over Zp.

The simplest field is Z2, which consists of two elements 0, 1 with addition
satisfying 1+1 = 0. So in Z2, −1 = 1 and the arithmetic involved in solving
equations over Z2 is very simple.

EXAMPLE 1.1.4 Solve the following system over Z2:

x+ y + z = 0

x+ z = 1.

Solution. We add the first equation to the second to get y = 1. Then x =
1− z = 1+ z, with z arbitrary. Hence the solutions are (x, y, z) = (1, 1, 0)
and (0, 1, 1).

We use Q and R to denote the fields of rational and real numbers, re-
spectively. Unless otherwise stated, the field used will be Q.
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1.2 Solving linear equations

We show how to solve any system of linear equations over an arbitrary field,
using the GAUSS–JORDAN algorithm. We first need to define some terms.

DEFINITION 1.2.1 (Row–echelon form) A matrix is in row–echelon
form if

(i) all zero rows (if any) are at the bottom of the matrix and

(ii) if two successive rows are non–zero, the second row starts with more
zeros than the first (moving from left to right).

For example, the matrix








0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0









is in row–echelon form, whereas the matrix








0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0









is not in row–echelon form.

The zero matrix of any size is always in row–echelon form.

DEFINITION 1.2.2 (Reduced row–echelon form) A matrix is in re-
duced row–echelon form if

1. it is in row–echelon form,

2. the leading (leftmost non–zero) entry in each non–zero row is 1,

3. all other elements of the column in which the leading entry 1 occurs
are zeros.

For example the matrices

[

1 0
0 1

]

and









0 1 2 0 0 2
0 0 0 1 0 3
0 0 0 0 1 4
0 0 0 0 0 0
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are in reduced row–echelon form, whereas the matrices





1 0 0
0 1 0
0 0 2



 and





1 2 0
0 1 0
0 0 0





are not in reduced row–echelon form, but are in row–echelon form.

The zero matrix of any size is always in reduced row–echelon form.

Notation. If a matrix is in reduced row–echelon form, it is useful to denote
the column numbers in which the leading entries 1 occur, by c1, c2, . . . , cr,
with the remaining column numbers being denoted by cr+1, . . . , cn, where
r is the number of non–zero rows. For example, in the 4× 6 matrix above,
we have r = 3, c1 = 2, c2 = 4, c3 = 5, c4 = 1, c5 = 3, c6 = 6.

The following operations are the ones used on systems of linear equations
and do not change the solutions.

DEFINITION 1.2.3 (Elementary row operations) There are three
types of elementary row operations that can be performed on matrices:

1. Interchanging two rows:

Ri ↔ Rj interchanges rows i and j.

2. Multiplying a row by a non–zero scalar:

Ri → tRi multiplies row i by the non–zero scalar t.

3. Adding a multiple of one row to another row:

Rj → Rj + tRi adds t times row i to row j.

DEFINITION 1.2.4 [Row equivalence]Matrix A is row–equivalent to ma-
trix B if B is obtained from A by a sequence of elementary row operations.

EXAMPLE 1.2.1 Working from left to right,

A =





1 2 0
2 1 1
1 −1 2



 R2 → R2 + 2R3





1 2 0
4 −1 5
1 −1 2





R2 ↔ R3





1 2 0
1 −1 2
4 −1 5



 R1 → 2R1





2 4 0
1 −1 2
4 −1 5



 = B.
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Thus A is row–equivalent to B. Clearly B is also row–equivalent to A, by
performing the inverse row–operations R1 → 1

2R1, R2 ↔ R3, R2 → R2−2R3
on B.

It is not difficult to prove that if A and B are row–equivalent augmented
matrices of two systems of linear equations, then the two systems have the
same solution sets – a solution of the one system is a solution of the other.
For example the systems whose augmented matrices are A and B in the
above example are respectively







x+ 2y = 0
2x+ y = 1
x− y = 2

and







2x+ 4y = 0
x− y = 2
4x− y = 5

and these systems have precisely the same solutions.

1.3 The Gauss–Jordan algorithm

We now describe the GAUSS–JORDAN ALGORITHM. This is a process
which starts with a given matrix A and produces a matrix B in reduced row–
echelon form, which is row–equivalent to A. If A is the augmented matrix
of a system of linear equations, then B will be a much simpler matrix than
A from which the consistency or inconsistency of the corresponding system
is immediately apparent and in fact the complete solution of the system can
be read off.

STEP 1.

Find the first non–zero column moving from left to right, (column c1)
and select a non–zero entry from this column. By interchanging rows, if
necessary, ensure that the first entry in this column is non–zero. Multiply
row 1 by the multiplicative inverse of a1c1 thereby converting a1c1 to 1. For
each non–zero element aic1 , i > 1, (if any) in column c1, add −aic1 times
row 1 to row i, thereby ensuring that all elements in column c1, apart from
the first, are zero.

STEP 2. If the matrix obtained at Step 1 has its 2nd, . . . ,mth rows all
zero, the matrix is in reduced row–echelon form. Otherwise suppose that
the first column which has a non–zero element in the rows below the first is
column c2. Then c1 < c2. By interchanging rows below the first, if necessary,
ensure that a2c2 is non–zero. Then convert a2c2 to 1 and by adding suitable
multiples of row 2 to the remaing rows, where necessary, ensure that all
remaining elements in column c2 are zero.
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The process is repeated and will eventually stop after r steps, either
because we run out of rows, or because we run out of non–zero columns. In
general, the final matrix will be in reduced row–echelon form and will have
r non–zero rows, with leading entries 1 in columns c1, . . . , cr, respectively.

EXAMPLE 1.3.1





0 0 4 0
2 2 −2 5
5 5 −1 5



 R1 ↔ R2





2 2 −2 5
0 0 4 0
5 5 −1 5





R1 → 1
2R1





1 1 −1 5
2

0 0 4 0
5 5 −1 5



 R3 → R3 − 5R1





1 1 −1 5
2

0 0 4 0
0 0 4 −152





R2 → 1
4R2





1 1 −1 5
2

0 0 1 0
0 0 4 −152





{

R1 → R1 +R2
R3 → R3 − 4R2





1 1 0 5
2

0 0 1 0
0 0 0 −152





R3 → −2
15R3





1 1 0 5
2

0 0 1 0
0 0 0 1



 R1 → R1 − 5
2R3





1 1 0 0
0 0 1 0
0 0 0 1





The last matrix is in reduced row–echelon form.

REMARK 1.3.1 It is possible to show that a given matrix over an ar-
bitrary field is row–equivalent to precisely one matrix which is in reduced
row–echelon form.

A flow–chart for the Gauss–Jordan algorithm, based on [1, page 83] is pre-
sented in figure 1.1 below.

1.4 Systematic solution of linear systems.

Suppose a system of m linear equations in n unknowns x1, · · · , xn has aug-
mented matrix A and that A is row–equivalent to a matrix B which is in
reduced row–echelon form, via the Gauss–Jordan algorithm. Then A and B
are m× (n+ 1). Suppose that B has r non–zero rows and that the leading
entry 1 in row i occurs in column number ci, for 1 ≤ i ≤ r. Then

1 ≤ c1 < c2 < · · · , < cr ≤ n+ 1.
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START

?
InputA, m, n

?
i = 1, j = 1

?- ¾

?
Are the elements in the
jth column on and below
the ith row all zero?

j = j + 1@
@
@
@@

R YesNo
?

Is j = n?

Yes
No

-

6

Let apj be the first non–zero
element in column j on or

below the ith row

?
Is p = i?

Yes

?

PPPPPq No

Interchange the
pth and ith rows

©©©©©©©

¼

Divide the ith row by aij

?
Subtract aqj times the ith
row from the qth row for
for q = 1, . . . ,m (q 6= i)

?
Set ci = j

?
Is i = m?
´

´
+́

Is j = n?¾

i = i+ 1
j = j + 1

6

No

No

Yes

Yes -

-
6

?

Print A,
c1, . . . , ci

?

STOP

Figure 1.1: Gauss–Jordan algorithm.
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Also assume that the remaining column numbers are cr+1, · · · , cn+1, where
1 ≤ cr+1 < cr+2 < · · · < cn ≤ n+ 1.

Case 1: cr = n + 1. The system is inconsistent. For the last non–zero
row of B is [0, 0, · · · , 1] and the corresponding equation is

0x1 + 0x2 + · · ·+ 0xn = 1,
which has no solutions. Consequently the original system has no solutions.

Case 2: cr ≤ n. The system of equations corresponding to the non–zero
rows of B is consistent. First notice that r ≤ n here.
If r = n, then c1 = 1, c2 = 2, · · · , cn = n and

B =

























1 0 · · · 0 d1
0 1 · · · 0 d2
...

...
0 0 · · · 1 dn
0 0 · · · 0 0
...

...
0 0 · · · 0 0

























.

There is a unique solution x1 = d1, x2 = d2, · · · , xn = dn.

If r < n, there will be more than one solution (infinitely many if the
field is infinite). For all solutions are obtained by taking the unknowns
xc1 , · · · , xcr as dependent unknowns and using the r equations correspond-
ing to the non–zero rows of B to express these unknowns in terms of the
remaining independent unknowns xcr+1 , . . . , xcn , which can take on arbi-
trary values:

xc1 = b1n+1 − b1cr+1xcr+1 − · · · − b1cnxcn
...

xcr = br n+1 − brcr+1xcr+1 − · · · − brcnxcn .
In particular, taking xcr+1 = 0, . . . , xcn−1 = 0 and xcn = 0, 1 respectively,
produces at least two solutions.

EXAMPLE 1.4.1 Solve the system

x+ y = 0

x− y = 1

4x+ 2y = 1.
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Solution. The augmented matrix of the system is

A =





1 1 0
1 −1 1
4 2 1





which is row equivalent to

B =





1 0 1
2

0 1 −12
0 0 0



 .

We read off the unique solution x = 1
2 , y = −12 .

(Here n = 2, r = 2, c1 = 1, c2 = 2. Also cr = c2 = 2 < 3 = n + 1 and
r = n.)

EXAMPLE 1.4.2 Solve the system

2x1 + 2x2 − 2x3 = 5
7x1 + 7x2 + x3 = 10
5x1 + 5x2 − x3 = 5.

Solution. The augmented matrix is

A =





2 2 −2 5
7 7 1 10
5 5 −1 5





which is row equivalent to

B =





1 1 0 0
0 0 1 0
0 0 0 1



 .

We read off inconsistency for the original system.
(Here n = 3, r = 3, c1 = 1, c2 = 3. Also cr = c3 = 4 = n+ 1.)

EXAMPLE 1.4.3 Solve the system

x1 − x2 + x3 = 1

x1 + x2 − x3 = 2.
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Solution. The augmented matrix is

A =

[

1 −1 1 1
1 1 −1 2

]

which is row equivalent to

B =

[

1 0 0 3
2

0 1 −1 1
2

]

.

The complete solution is x1 =
3
2 , x2 =

1
2 + x3, with x3 arbitrary.

(Here n = 3, r = 2, c1 = 1, c2 = 2. Also cr = c2 = 2 < 4 = n + 1 and
r < n.)

EXAMPLE 1.4.4 Solve the system

6x3 + 2x4 − 4x5 − 8x6 = 8

3x3 + x4 − 2x5 − 4x6 = 4

2x1 − 3x2 + x3 + 4x4 − 7x5 + x6 = 2

6x1 − 9x2 + 11x4 − 19x5 + 3x6 = 1.

Solution. The augmented matrix is

A =









0 0 6 2 −4 −8 8
0 0 3 1 −2 −4 4
2 −3 1 4 −7 1 2
6 −9 0 11 −19 3 1









which is row equivalent to

B =









1 −32 0 11
6 −196 0 1

24
0 0 1 1

3 −23 0 5
3

0 0 0 0 0 1 1
4

0 0 0 0 0 0 0









.

The complete solution is

x1 =
1
24 +

3
2x2 − 11

6 x4 +
19
6 x5,

x3 =
5
3 − 1

3x4 +
2
3x5,

x6 =
1
4 ,

with x2, x4, x5 arbitrary.
(Here n = 6, r = 3, c1 = 1, c2 = 3, c3 = 6; cr = c3 = 6 < 7 = n+ 1; r < n.)
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EXAMPLE 1.4.5 Find the rational number t for which the following sys-
tem is consistent and solve the system for this value of t.

x+ y = 2

x− y = 0

3x− y = t.

Solution. The augmented matrix of the system is

A =





1 1 2
1 −1 0
3 −1 t





which is row–equivalent to the simpler matrix

B =





1 1 2
0 1 1
0 0 t− 2



 .

Hence if t 6= 2 the system is inconsistent. If t = 2 the system is consistent
and

B =





1 1 2
0 1 1
0 0 0



→





1 0 1
0 1 1
0 0 0



 .

We read off the solution x = 1, y = 1.

EXAMPLE 1.4.6 For which rationals a and b does the following system
have (i) no solution, (ii) a unique solution, (iii) infinitely many solutions?

x− 2y + 3z = 4

2x− 3y + az = 5

3x− 4y + 5z = b.

Solution. The augmented matrix of the system is

A =





1 −2 3 4
2 −3 a 5
3 −4 5 b
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{

R2 → R2 − 2R1
R3 → R3 − 3R1





1 −2 3 4
0 1 a− 6 −3
0 2 −4 b− 12





R3 → R3 − 2R2





1 −2 3 4
0 1 a− 6 −3
0 0 −2a+ 8 b− 6



 = B.

Case 1. a 6= 4. Then −2a+ 8 6= 0 and we see that B can be reduced to
a matrix of the form





1 0 0 u
0 1 0 v

0 0 1 b−6
−2a+8





and we have the unique solution x = u, y = v, z = (b− 6)/(−2a+ 8).
Case 2. a = 4. Then

B =





1 −2 3 4
0 1 −2 −3
0 0 0 b− 6



 .

If b 6= 6 we get no solution, whereas if b = 6 then

B =





1 −2 3 4
0 1 −2 −3
0 0 0 0



 R1 → R1 + 2R2





1 0 −1 −2
0 1 −2 −3
0 0 0 0



. We

read off the complete solution x = −2 + z, y = −3 + 2z, with z arbitrary.

EXAMPLE 1.4.7 Find the reduced row–echelon form of the following ma-
trix over Z3:

[

2 1 2 1
2 2 1 0

]

.

Hence solve the system

2x+ y + 2z = 1

2x+ 2y + z = 0

over Z3.

Solution.
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[

2 1 2 1
2 2 1 0

]

R2 → R2 −R1
[

2 1 2 1
0 1 −1 −1

]

=

[

2 1 2 1
0 1 2 2

]

R1 → 2R1

[

1 2 1 2
0 1 2 2

]

R1 → R1 +R2

[

1 0 0 1
0 1 2 2

]

.

The last matrix is in reduced row–echelon form.
To solve the system of equations whose augmented matrix is the given

matrix over Z3, we see from the reduced row–echelon form that x = 1 and
y = 2 − 2z = 2 + z, where z = 0, 1, 2. Hence there are three solutions
to the given system of linear equations: (x, y, z) = (1, 2, 0), (1, 0, 1) and
(1, 1, 2).

1.5 Homogeneous systems

A system of homogeneous linear equations is a system of the form

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0
...

am1x1 + am2x2 + · · ·+ amnxn = 0.

Such a system is always consistent as x1 = 0, · · · , xn = 0 is a solution.
This solution is called the trivial solution. Any other solution is called a
non–trivial solution.
For example the homogeneous system

x− y = 0

x+ y = 0

has only the trivial solution, whereas the homogeneous system

x− y + z = 0

x+ y + z = 0

has the complete solution x = −z, y = 0, z arbitrary. In particular, taking
z = 1 gives the non–trivial solution x = −1, y = 0, z = 1.
There is simple but fundamental theorem concerning homogeneous sys-

tems.

THEOREM 1.5.1 A homogeneous system of m linear equations in n un-
knowns always has a non–trivial solution if m < n.
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Proof. Suppose that m < n and that the coefficient matrix of the system
is row–equivalent to B, a matrix in reduced row–echelon form. Let r be the
number of non–zero rows in B. Then r ≤ m < n and hence n − r > 0 and
so the number n − r of arbitrary unknowns is in fact positive. Taking one
of these unknowns to be 1 gives a non–trivial solution.

REMARK 1.5.1 Let two systems of homogeneous equations in n un-
knowns have coefficient matrices A and B, respectively. If each row of B is
a linear combination of the rows of A (i.e. a sum of multiples of the rows
of A) and each row of A is a linear combination of the rows of B, then it is
easy to prove that the two systems have identical solutions. The converse is
true, but is not easy to prove. Similarly if A and B have the same reduced
row–echelon form, apart from possibly zero rows, then the two systems have
identical solutions and conversely.
There is a similar situation in the case of two systems of linear equations

(not necessarily homogeneous), with the proviso that in the statement of
the converse, the extra condition that both the systems are consistent, is
needed.

1.6 PROBLEMS

1. Which of the following matrices of rationals is in reduced row–echelon
form?

(a)





1 0 0 0 −3
0 0 1 0 4
0 0 0 1 2



 (b)





0 1 0 0 5
0 0 1 0 −4
0 0 0 −1 3



 (c)





0 1 0 0
0 0 1 0
0 1 0 −2





(d)









0 1 0 0 2
0 0 0 0 −1
0 0 0 1 4
0 0 0 0 0









(e)









1 2 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0









(f)









0 0 0 0
0 0 1 2
0 0 0 1
0 0 0 0









(g)









1 0 0 0 1
0 1 0 0 2
0 0 0 1 −1
0 0 0 0 0









. [Answers: (a), (e), (g)]

2. Find reduced row–echelon forms which are row–equivalent to the following
matrices:

(a)

[

0 0 0
2 4 0

]

(b)

[

0 1 3
1 2 4

]

(c)





1 1 1
1 1 0
1 0 0



 (d)





2 0 0
0 0 0

−4 0 0



 .
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[Answers:

(a)

[

1 2 0
0 0 0

]

(b)

[

1 0 −2
0 1 3

]

(c)





1 0 0
0 1 0
0 0 1



 (d)





1 0 0
0 0 0
0 0 0



.]

3. Solve the following systems of linear equations by reducing the augmented
matrix to reduced row–echelon form:

(a) x+ y + z = 2 (b) x1 + x2 − x3 + 2x4 = 10
2x+ 3y − z = 8 3x1 − x2 + 7x3 + 4x4 = 1
x− y − z = −8 −5x1 + 3x2 − 15x3 − 6x4 = 9

(c) 3x− y + 7z = 0 (d) 2x2 + 3x3 − 4x4 = 1
2x− y + 4z = 1

2 2x3 + 3x4 = 4
x− y + z = 1 2x1 + 2x2 − 5x3 + 2x4 = 4

6x− 4y + 10z = 3 2x1 − 6x3 + 9x4 = 7

[Answers: (a) x = −3, y = 19
4 , z =

1
4 ; (b) inconsistent;

(c) x = −12 − 3z, y = −32 − 2z, with z arbitrary;
(d) x1 =

19
2 − 9x4, x2 = −52 + 17

4 x4, x3 = 2− 3
2x4, with x4 arbitrary.]

4. Show that the following system is consistent if and only if c = 2a − 3b
and solve the system in this case.

2x− y + 3z = a

3x+ y − 5z = b

−5x− 5y + 21z = c.

[Answer: x = a+b
5 +

2
5z, y =

−3a+2b
5 + 19

5 z, with z arbitrary.]

5. Find the value of t for which the following system is consistent and solve
the system for this value of t.

x+ y = 1

tx+ y = t

(1 + t)x+ 2y = 3.

[Answer: t = 2; x = 1, y = 0.]
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6. Solve the homogeneous system

−3x1 + x2 + x3 + x4 = 0

x1 − 3x2 + x3 + x4 = 0

x1 + x2 − 3x3 + x4 = 0

x1 + x2 + x3 − 3x4 = 0.

[Answer: x1 = x2 = x3 = x4, with x4 arbitrary.]

7. For which rational numbers λ does the homogeneous system

x+ (λ− 3)y = 0

(λ− 3)x+ y = 0

have a non–trivial solution?

[Answer: λ = 2, 4.]

8. Solve the homogeneous system

3x1 + x2 + x3 + x4 = 0

5x1 − x2 + x3 − x4 = 0.

[Answer: x1 = −14x3, x2 = −14x3 − x4, with x3 and x4 arbitrary.]
9. Let A be the coefficient matrix of the following homogeneous system of
n equations in n unknowns:

(1− n)x1 + x2 + · · ·+ xn = 0

x1 + (1− n)x2 + · · ·+ xn = 0

· · · = 0

x1 + x2 + · · ·+ (1− n)xn = 0.

Find the reduced row–echelon form of A and hence, or otherwise, prove that
the solution of the above system is x1 = x2 = · · · = xn, with xn arbitrary.

10. Let A =

[

a b
c d

]

be a matrix over a field F . Prove that A is row–

equivalent to

[

1 0
0 1

]

if ad − bc 6= 0, but is row–equivalent to a matrix
whose second row is zero, if ad− bc = 0.
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11. For which rational numbers a does the following system have (i) no
solutions (ii) exactly one solution (iii) infinitely many solutions?

x+ 2y − 3z = 4

3x− y + 5z = 2

4x+ y + (a2 − 14)z = a+ 2.

[Answer: a = −4, no solution; a = 4, infinitely many solutions; a 6= ±4,
exactly one solution.]

12. Solve the following system of homogeneous equations over Z2:

x1 + x3 + x5 = 0

x2 + x4 + x5 = 0

x1 + x2 + x3 + x4 = 0

x3 + x4 = 0.

[Answer: x1 = x2 = x4 + x5, x3 = x4, with x4 and x5 arbitrary elements of
Z2.]

13. Solve the following systems of linear equations over Z5:

(a) 2x+ y + 3z = 4 (b) 2x+ y + 3z = 4
4x+ y + 4z = 1 4x+ y + 4z = 1
3x+ y + 2z = 0 x+ y = 3.

[Answer: (a) x = 1, y = 2, z = 0; (b) x = 1 + 2z, y = 2 + 3z, with z an
arbitrary element of Z5.]

14. If (α1, . . . , αn) and (β1, . . . , βn) are solutions of a system of linear equa-
tions, prove that

((1− t)α1 + tβ1, . . . , (1− t)αn + tβn)

is also a solution.

15. If (α1, . . . , αn) is a solution of a system of linear equations, prove that
the complete solution is given by x1 = α1 + y1, . . . , xn = αn + yn, where
(y1, . . . , yn) is the general solution of the associated homogeneous system.
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16. Find the values of a and b for which the following system is consistent.
Also find the complete solution when a = b = 2.

x+ y − z + w = 1

ax+ y + z + w = b

3x+ 2y + aw = 1 + a.

[Answer: a 6= 2 or a = 2 = b; x = 1− 2z, y = 3z − w, with z, w arbitrary.]
17. Let F = {0, 1, a, b} be a field consisting of 4 elements.

(a) Determine the addition and multiplication tables of F . (Hint: Prove
that the elements 1+0, 1+1, 1+a, 1+ b are distinct and deduce that
1 + 1 + 1 + 1 = 0; then deduce that 1 + 1 = 0.)

(b) A matrix A, whose elements belong to F , is defined by

A =





1 a b a
a b b 1
1 1 1 a



 ,

prove that the reduced row–echelon form of A is given by the matrix

B =





1 0 0 0
0 1 0 b
0 0 1 1



 .
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Chapter 2

MATRICES

2.1 Matrix arithmetic

A matrix over a field F is a rectangular array of elements from F . The sym-
bol Mm×n(F ) denotes the collection of all m× n matrices over F . Matrices
will usually be denoted by capital letters and the equation A = [aij ] means
that the element in the i–th row and j–th column of the matrix A equals
aij . It is also occasionally convenient to write aij = (A)ij . For the present,
all matrices will have rational entries, unless otherwise stated.

EXAMPLE 2.1.1 The formula aij = 1/(i + j) for 1 ≤ i ≤ 3, 1 ≤ j ≤ 4
defines a 3× 4 matrix A = [aij ], namely

A =













1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7













.

DEFINITION 2.1.1 (Equality of matrices) MatricesA andB are said
to be equal if A and B have the same size and corresponding elements are
equal; that is A and B ∈ Mm×n(F ) and A = [aij ], B = [bij ], with aij = bij
for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

DEFINITION 2.1.2 (Addition of matrices) Let A = [aij ] and B =
[bij ] be of the same size. Then A + B is the matrix obtained by adding
corresponding elements of A and B; that is

A+B = [aij ] + [bij ] = [aij + bij ].

23
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DEFINITION 2.1.3 (Scalar multiple of a matrix) Let A = [aij ] and
t ∈ F (that is t is a scalar). Then tA is the matrix obtained by multiplying
all elements of A by t; that is

tA = t[aij ] = [taij ].

DEFINITION 2.1.4 (Additive inverse of a matrix) Let A = [aij ] .
Then −A is the matrix obtained by replacing the elements of A by their
additive inverses; that is

−A = −[aij ] = [−aij ].

DEFINITION 2.1.5 (Subtraction of matrices) Matrix subtraction is
defined for two matrices A = [aij ] and B = [bij ] of the same size, in the
usual way; that is

A−B = [aij ]− [bij ] = [aij − bij ].

DEFINITION 2.1.6 (The zero matrix) For each m, n the matrix in
Mm×n(F ), all of whose elements are zero, is called the zero matrix (of size
m× n) and is denoted by the symbol 0.

The matrix operations of addition, scalar multiplication, additive inverse
and subtraction satisfy the usual laws of arithmetic. (In what follows, s and
t will be arbitrary scalars and A, B, C are matrices of the same size.)

1. (A+B) + C = A+ (B + C);

2. A+B = B +A;

3. 0 +A = A;

4. A+ (−A) = 0;

5. (s+ t)A = sA+ tA, (s− t)A = sA− tA;

6. t(A+B) = tA+ tB, t(A−B) = tA− tB;

7. s(tA) = (st)A;

8. 1A = A, 0A = 0, (−1)A = −A;

9. tA = 0⇒ t = 0 or A = 0.

Other similar properties will be used when needed.
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DEFINITION 2.1.7 (Matrix product) Let A = [aij ] be a matrix of
size m × n and B = [bjk] be a matrix of size n × p; (that is the number
of columns of A equals the number of rows of B). Then AB is the m × p
matrix C = [cik] whose (i, k)–th element is defined by the formula

cik =
n
∑

j=1

aijbjk = ai1b1k + · · ·+ ainbnk.

EXAMPLE 2.1.2

1.

[

1 2
3 4

] [

5 6
7 8

]

=

[

1× 5 + 2× 7 1× 6 + 2× 8
3× 5 + 4× 7 3× 6 + 4× 8

]

=

[

19 22
43 50

]

;

2.

[

5 6
7 8

] [

1 2
3 4

]

=

[

23 34
31 46

]

6=
[

1 2
3 4

] [

5 6
7 8

]

;

3.

[

1
2

]

[

3 4
]

=

[

3 4
6 8

]

;

4.
[

3 4
]

[

1
2

]

=
[

11
]

;

5.

[

1 −1
1 −1

] [

1 −1
1 −1

]

=

[

0 0
0 0

]

.

Matrix multiplication obeys many of the familiar laws of arithmetic apart
from the commutative law.

1. (AB)C = A(BC) if A, B, C are m× n, n× p, p× q, respectively;
2. t(AB) = (tA)B = A(tB), A(−B) = (−A)B = −(AB);
3. (A+B)C = AC +BC if A and B are m× n and C is n× p;
4. D(A+B) = DA+DB if A and B are m× n and D is p×m.
We prove the associative law only:

First observe that (AB)C and A(BC) are both of size m× q.
Let A = [aij ], B = [bjk], C = [ckl]. Then

((AB)C)il =

p
∑

k=1

(AB)ikckl =

p
∑

k=1





n
∑

j=1

aijbjk



 ckl

=

p
∑

k=1

n
∑

j=1

aijbjkckl.
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Similarly

(A(BC))il =
n
∑

j=1

p
∑

k=1

aijbjkckl.

However the double summations are equal. For sums of the form

n
∑

j=1

p
∑

k=1

djk and

p
∑

k=1

n
∑

j=1

djk

represent the sum of the np elements of the rectangular array [djk], by rows
and by columns, respectively. Consequently

((AB)C)il = (A(BC))il

for 1 ≤ i ≤ m, 1 ≤ l ≤ q. Hence (AB)C = A(BC).

The system of m linear equations in n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

is equivalent to a single matrix equation










a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn





















x1
x2
...

xn











=











b1
b2
...

bm











,

that is AX = B, where A = [aij ] is the coefficient matrix of the system,

X =











x1
x2
...
xn











is the vector of unknowns and B =











b1
b2
...
bm











is the vector of

constants.
Another useful matrix equation equivalent to the above system of linear

equations is

x1











a11
a21
...

am1











+ x2











a12
a22
...

am2











+ · · ·+ xn











a1n
a2n
...

amn











=











b1
b2
...
bm











.
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EXAMPLE 2.1.3 The system

x+ y + z = 1

x− y + z = 0.

is equivalent to the matrix equation

[

1 1 1
1 −1 1

]





x
y
z



 =

[

1
0

]

and to the equation

x

[

1
1

]

+ y

[

1
−1

]

+ z

[

1
1

]

=

[

1
0

]

.

2.2 Linear transformations

An n–dimensional column vector is an n× 1 matrix over F . The collection
of all n–dimensional column vectors is denoted by F n.
Every matrix is associated with an important type of function called a

linear transformation.

DEFINITION 2.2.1 (Linear transformation) WithA ∈Mm×n(F ), we
associate the function TA : F

n → Fm defined by TA(X) = AX for all
X ∈ Fn. More explicitly, using components, the above function takes the
form

y1 = a11x1 + a12x2 + · · ·+ a1nxn
y2 = a21x1 + a22x2 + · · ·+ a2nxn

...

ym = am1x1 + am2x2 + · · ·+ amnxn,

where y1, y2, · · · , ym are the components of the column vector TA(X).

The function just defined has the property that

TA(sX + tY ) = sTA(X) + tTA(Y ) (2.1)

for all s, t ∈ F and all n–dimensional column vectors X, Y . For

TA(sX + tY ) = A(sX + tY ) = s(AX) + t(AY ) = sTA(X) + tTA(Y ).
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REMARK 2.2.1 It is easy to prove that if T : F n → Fm is a function
satisfying equation 2.1, then T = TA, where A is the m × n matrix whose
columns are T (E1), . . . , T (En), respectively, where E1, . . . , En are the n–
dimensional unit vectors defined by

E1 =











1
0
...
0











, . . . , En =











0
0
...
1











.

One well–known example of a linear transformation arises from rotating
the (x, y)–plane in 2-dimensional Euclidean space, anticlockwise through θ
radians. Here a point (x, y) will be transformed into the point (x1, y1),
where

x1 = x cos θ − y sin θ
y1 = x sin θ + y cos θ.

In 3–dimensional Euclidean space, the equations

x1 = x cos θ − y sin θ, y1 = x sin θ + y cos θ, z1 = z;

x1 = x, y1 = y cosφ− z sinφ, z1 = y sinφ+ z cosφ;

x1 = x cosψ − z sinψ, y1 = y, z1 = x sinψ + z cosψ;

correspond to rotations about the positive z, x, y–axes, anticlockwise through
θ, φ, ψ radians, respectively.

The product of two matrices is related to the product of the correspond-
ing linear transformations:

If A ism×n and B is n×p, then the function TATB : F p → Fm, obtained
by first performing TB, then TA is in fact equal to the linear transformation
TAB. For if X ∈ F p, we have

TATB(X) = A(BX) = (AB)X = TAB(X).

The following example is useful for producing rotations in 3–dimensional
animated design. (See [27, pages 97–112].)

EXAMPLE 2.2.1 The linear transformation resulting from successively
rotating 3–dimensional space about the positive z, x, y–axes, anticlockwise
through θ, φ, ψ radians respectively, is equal to TABC , where
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θ
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Figure 2.1: Reflection in a line.

C =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



, B =





1 0 0
0 cosφ − sinφ
0 sinφ cosφ



.

A =





cosψ 0 − sinψ
0 1 0
sinψ 0 cosψ



.

The matrix ABC is quite complicated:

A(BC) =





cosψ 0 − sinψ
0 1 0
sinψ 0 cosψ









cos θ − sin θ 0
cosφ sin θ cosφ cos θ − sinφ
sinφ sin θ sinφ cos θ cosφ





=





cosψ cos θ − sinψ sinφ sin θ − cosψ sin θ − sinψ sinφ sin θ − sinψ cosφ
cosφ sin θ cosφ cos θ − sinφ

sinψ cos θ + cosψ sinφ sin θ − sinψ sin θ + cosψ sinφ cos θ cosψ cosφ



.

EXAMPLE 2.2.2 Another example of a linear transformation arising from
geometry is reflection of the plane in a line l inclined at an angle θ to the
positive x–axis.

We reduce the problem to the simpler case θ = 0, where the equations
of transformation are x1 = x, y1 = −y. First rotate the plane clockwise
through θ radians, thereby taking l into the x–axis; next reflect the plane in
the x–axis; then rotate the plane anticlockwise through θ radians, thereby
restoring l to its original position.
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θ
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Figure 2.2: Projection on a line.

In terms of matrices, we get transformation equations

[

x1
y1

]

=

[

cos θ − sin θ
sin θ cos θ

] [

1 0
0 −1

] [

cos (−θ) − sin (−θ)
sin (−θ) cos (−θ)

] [

x
y

]

=

[

cos θ sin θ
sin θ − cos θ

] [

cos θ sin θ
− sin θ cos θ

] [

x
y

]

=

[

cos 2θ sin 2θ
sin 2θ − cos 2θ

] [

x
y

]

.

The more general transformation

[

x1
y1

]

= a

[

cos θ − sin θ
sin θ cos θ

] [

x
y

]

+

[

u
v

]

, a > 0,

represents a rotation, followed by a scaling and then by a translation. Such
transformations are important in computer graphics. See [23, 24].

EXAMPLE 2.2.3 Our last example of a geometrical linear transformation
arises from projecting the plane onto a line l through the origin, inclined
at angle θ to the positive x–axis. Again we reduce that problem to the
simpler case where l is the x–axis and the equations of transformation are
x1 = x, y1 = 0.
In terms of matrices, we get transformation equations

[

x1
y1

]

=

[

cos θ − sin θ
sin θ cos θ

] [

1 0
0 0

] [

cos (−θ) − sin (−θ)
sin (−θ) cos (−θ)

] [

x
y

]
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=

[

cos θ 0
sin θ 0

] [

cos θ sin θ
− sin θ cos θ

] [

x
y

]

=

[

cos2 θ cos θ sin θ
sin θ cos θ sin2 θ

] [

x
y

]

.

2.3 Recurrence relations

DEFINITION 2.3.1 (The identity matrix) The n × n matrix In =
[δij ], defined by δij = 1 if i = j, δij = 0 if i 6= j, is called the n× n identity
matrix of order n. In other words, the columns of the identity matrix of
order n are the unit vectors E1, · · · , En, respectively.

For example, I2 =

[

1 0
0 1

]

.

THEOREM 2.3.1 If A is m× n, then ImA = A = AIn.

DEFINITION 2.3.2 (k–th power of a matrix) If A is an n×nmatrix,
we define Ak recursively as follows: A0 = In and A

k+1 = AkA for k ≥ 0.

For example A1 = A0A = InA = A and hence A2 = A1A = AA.

The usual index laws hold provided AB = BA:

1. AmAn = Am+n, (Am)n = Amn;

2. (AB)n = AnBn;

3. AmBn = BnAm;

4. (A+B)2 = A2 + 2AB +B2;

5. (A+B)n =
n
∑

i=0

(

n
i

)

AiBn−i;

6. (A+B)(A−B) = A2 −B2.

We now state a basic property of the natural numbers.

AXIOM 2.3.1 (PRINCIPLE OF MATHEMATICAL INDUCTION)
If for each n ≥ 1, Pn denotes a mathematical statement and

(i) P1 is true,



32 CHAPTER 2. MATRICES

(ii) the truth of Pn implies that of Pn+1 for each n ≥ 1,

then Pn is true for all n ≥ 1.

EXAMPLE 2.3.1 Let A =

[

7 4
−9 −5

]

. Prove that

An =

[

1 + 6n 4n
−9n 1− 6n

]

if n ≥ 1.

Solution. We use the principle of mathematical induction.

Take Pn to be the statement

An =

[

1 + 6n 4n
−9n 1− 6n

]

.

Then P1 asserts that

A1 =

[

1 + 6× 1 4× 1
−9× 1 1− 6× 1

]

=

[

7 4
−9 −5

]

,

which is true. Now let n ≥ 1 and assume that Pn is true. We have to deduce
that

An+1 =

[

1 + 6(n+ 1) 4(n+ 1)
−9(n+ 1) 1− 6(n+ 1)

]

=

[

7 + 6n 4n+ 4
−9n− 9 −5− 6n

]

.

Now

An+1 = AnA

=

[

1 + 6n 4n
−9n 1− 6n

] [

7 4
−9 −5

]

=

[

(1 + 6n)7 + (4n)(−9) (1 + 6n)4 + (4n)(−5)
(−9n)7 + (1− 6n)(−9) (−9n)4 + (1− 6n)(−5)

]

=

[

7 + 6n 4n+ 4
−9n− 9 −5− 6n

]

,

and “the induction goes through”.

The last example has an application to the solution of a system of re-
currence relations:
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EXAMPLE 2.3.2 The following system of recurrence relations holds for
all n ≥ 0:

xn+1 = 7xn + 4yn

yn+1 = −9xn − 5yn.

Solve the system for xn and yn in terms of x0 and y0.

Solution. Combine the above equations into a single matrix equation
[

xn+1
yn+1

]

=

[

7 4
−9 −5

] [

xn
yn

]

,

or Xn+1 = AXn, where A =

[

7 4
−9 −5

]

and Xn =

[

xn
yn

]

.

We see that

X1 = AX0

X2 = AX1 = A(AX0) = A2X0
...

Xn = AnX0.

(The truth of the equation Xn = AnX0 for n ≥ 1, strictly speaking
follows by mathematical induction; however for simple cases such as the
above, it is customary to omit the strict proof and supply instead a few
lines of motivation for the inductive statement.)
Hence the previous example gives

[

xn
yn

]

= Xn =

[

1 + 6n 4n
−9n 1− 6n

] [

x0
y0

]

=

[

(1 + 6n)x0 + (4n)y0
(−9n)x0 + (1− 6n)y0

]

,

and hence xn = (1+6n)x0+4ny0 and yn = (−9n)x0+(1−6n)y0, for n ≥ 1.

2.4 PROBLEMS

1. Let A, B, C, D be matrices defined by

A =





3 0
−1 2
1 1



 , B =





1 5 2
−1 1 0
−4 1 3



 ,



34 CHAPTER 2. MATRICES

C =





−3 −1
2 1
4 3



 , D =

[

4 −1
2 0

]

.

Which of the following matrices are defined? Compute those matrices
which are defined.

A+B, A+ C, AB, BA, CD, DC, D2.

[Answers: A+ C, BA, CD, D2;





0 −1
1 3
5 4



 ,





0 12
−4 2
−10 5



,





−14 3
10 −2
22 −4



,

[

14 −4
8 −2

]

.]

2. Let A =

[

−1 0 1
0 1 1

]

. Show that if B is a 3× 2 such that AB = I2,

then

B =





a b
−a− 1 1− b
a+ 1 b





for suitable numbers a and b. Use the associative law to show that
(BA)2B = B.

3. If A =

[

a b
c d

]

, prove that A2 − (a+ d)A+ (ad− bc)I2 = 0.

4. If A =

[

4 −3
1 0

]

, use the fact A2 = 4A − 3I2 and mathematical
induction, to prove that

An =
(3n − 1)
2

A+
3− 3n
2

I2 if n ≥ 1.

5. A sequence of numbers x1, x2, . . . , xn, . . . satisfies the recurrence rela-
tion xn+1 = axn+bxn−1 for n ≥ 1, where a and b are constants. Prove
that

[

xn+1
xn

]

= A

[

xn
xn−1

]

,
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where A =

[

a b
1 0

]

and hence express

[

xn+1
xn

]

in terms of

[

x1
x0

]

.

If a = 4 and b = −3, use the previous question to find a formula for
xn in terms of x1 and x0.

[Answer:

xn =
3n − 1
2

x1 +
3− 3n
2

x0.]

6. Let A =

[

2a −a2
1 0

]

.

(a) Prove that

An =

[

(n+ 1)an −nan+1
nan−1 (1− n)an

]

if n ≥ 1.

(b) A sequence x0, x1, . . . , xn, . . . satisfies the recurrence relation xn+1 =
2axn− a2xn−1 for n ≥ 1. Use part (a) and the previous question
to prove that xn = nan−1x1 + (1− n)anx0 for n ≥ 1.

7. Let A =

[

a b
c d

]

and suppose that λ1 and λ2 are the roots of the

quadratic polynomial x2−(a+d)x+ad−bc. (λ1 and λ2 may be equal.)
Let kn be defined by k0 = 0, k1 = 1 and for n ≥ 2

kn =
n
∑

i=1

λn−i1 λi−12 .

Prove that
kn+1 = (λ1 + λ2)kn − λ1λ2kn−1,

if n ≥ 1. Also prove that

kn =

{

(λn1 − λn2 )/(λ1 − λ2) if λ1 6= λ2,

nλn−11 if λ1 = λ2.

Use mathematical induction to prove that if n ≥ 1,

An = knA− λ1λ2kn−1I2,

[Hint: Use the equation A2 = (a+ d)A− (ad− bc)I2.]



36 CHAPTER 2. MATRICES

8. Use Question 6 to prove that if A =

[

1 2
2 1

]

, then

An =
3n

2

[

1 1
1 1

]

+
(−1)n−1
2

[

−1 1
1 −1

]

if n ≥ 1.

9. The Fibonacci numbers are defined by the equations F0 = 0, F1 = 1
and Fn+1 = Fn + Fn−1 if n ≥ 1. Prove that

Fn =
1√
5

((

1 +
√
5

2

)n

−
(

1−
√
5

2

)n)

if n ≥ 0.

10. Let r > 1 be an integer. Let a and b be arbitrary positive integers.
Sequences xn and yn of positive integers are defined in terms of a and
b by the recurrence relations

xn+1 = xn + ryn

yn+1 = xn + yn,

for n ≥ 0, where x0 = a and y0 = b.

Use Question 6 to prove that

xn
yn
→ √

r as n→∞.

2.5 Non–singular matrices

DEFINITION 2.5.1 (Non–singular matrix)

A square matrix A ∈ Mn×n(F ) is called non–singular or invertible if
there exists a matrix B ∈Mn×n(F ) such that

AB = In = BA.

Any matrix B with the above property is called an inverse of A. If A does
not have an inverse, A is called singular.



2.5. NON–SINGULAR MATRICES 37

THEOREM 2.5.1 (Inverses are unique)

If A has inverses B and C, then B = C.

Proof. Let B and C be inverses of A. Then AB = In = BA and AC =
In = CA. Then B(AC) = BIn = B and (BA)C = InC = C. Hence because
B(AC) = (BA)C, we deduce that B = C.

REMARK 2.5.1 If A has an inverse, it is denoted by A−1. So

AA−1 = In = A−1A.

Also if A is non–singular, it follows that A−1 is also non–singular and

(A−1)−1 = A.

THEOREM 2.5.2 If A and B are non–singular matrices of the same size,
then so is AB. Moreover

(AB)−1 = B−1A−1.

Proof.

(AB)(B−1A−1) = A(BB−1)A−1 = AInA
−1 = AA−1 = In.

Similarly
(B−1A−1)(AB) = In.

REMARK 2.5.2 The above result generalizes to a product of m non–
singular matrices: If A1, . . . , Am are non–singular n× n matrices, then the
product A1 . . . Am is also non–singular. Moreover

(A1 . . . Am)
−1 = A−1m . . . A−11 .

(Thus the inverse of the product equals the product of the inverses in the
reverse order.)

EXAMPLE 2.5.1 If A and B are n × n matrices satisfying A2 = B2 =
(AB)2 = In, prove that AB = BA.

Solution. Assume A2 = B2 = (AB)2 = In. Then A, B, AB are non–
singular and A−1 = A, B−1 = B, (AB)−1 = AB.
But (AB)−1 = B−1A−1 and hence AB = BA.
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EXAMPLE 2.5.2 A =

[

1 2
4 8

]

is singular. For suppose B =

[

a b
c d

]

is an inverse of A. Then the equation AB = I2 gives

[

1 2
4 8

] [

a b
c d

]

=

[

1 0
0 1

]

and equating the corresponding elements of column 1 of both sides gives the
system

a+ 2c = 1

4a+ 8c = 0

which is clearly inconsistent.

THEOREM 2.5.3 Let A =

[

a b
c d

]

and ∆ = ad − bc 6= 0. Then A is
non–singular. Also

A−1 = ∆−1
[

d −b
−c a

]

.

REMARK 2.5.3 The expression ad − bc is called the determinant of A

and is denoted by the symbols detA or

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

.

Proof. Verify that the matrix B = ∆−1
[

d −b
−c a

]

satisfies the equation

AB = I2 = BA.

EXAMPLE 2.5.3 Let

A =





0 1 0
0 0 1
5 0 0



 .

Verify that A3 = 5I3, deduce that A is non–singular and find A
−1.

Solution. After verifying that A3 = 5I3, we notice that

A

(

1

5
A2
)

= I3 =

(

1

5
A2
)

A.

Hence A is non–singular and A−1 = 1
5A
2.
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THEOREM 2.5.4 If the coefficient matrix A of a system of n equations
in n unknowns is non–singular, then the system AX = B has the unique
solution X = A−1B.

Proof. Assume that A−1 exists.

1. (Uniqueness.) Assume that AX = B. Then

(A−1A)X = A−1B,

InX = A−1B,

X = A−1B.

2. (Existence.) Let X = A−1B. Then

AX = A(A−1B) = (AA−1)B = InB = B.

THEOREM 2.5.5 (Cramer’s rule for 2 equations in 2 unknowns)

The system

ax+ by = e

cx+ dy = f

has a unique solution if ∆ =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

6= 0, namely

x =
∆1
∆
, y =

∆2
∆
,

where

∆1 =

∣

∣

∣

∣

e b
f d

∣

∣

∣

∣

and ∆2 =

∣

∣

∣

∣

a e
c f

∣

∣

∣

∣

.

Proof. Suppose ∆ 6= 0. Then A =
[

a b
c d

]

has inverse

A−1 = ∆−1
[

d −b
−c a

]

and we know that the system

A

[

x
y

]

=

[

e
f

]
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has the unique solution

[

x
y

]

= A−1
[

e
f

]

=
1

∆

[

d −b
−c a

] [

e
f

]

=
1

∆

[

de− bf
−ce+ af

]

=
1

∆

[

∆1
∆2

]

=

[

∆1/∆
∆2/∆

]

.

Hence x = ∆1/∆, y = ∆2/∆.

COROLLARY 2.5.1 The homogeneous system

ax+ by = 0

cx+ dy = 0

has only the trivial solution if ∆ =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

6= 0.

EXAMPLE 2.5.4 The system

7x+ 8y = 100

2x− 9y = 10

has the unique solution x = ∆1/∆, y = ∆2/∆, where

∆ =

∣

∣

∣

∣

7 8
2 −9

∣

∣

∣

∣

= −79, ∆1 =
∣

∣

∣

∣

100 8
10 −9

∣

∣

∣

∣

= −980, ∆2 =
∣

∣

∣

∣

7 100
2 10

∣

∣

∣

∣

= −130.

So x = 980
79 and y =

130
79 .

THEOREM 2.5.6 Let A be a square matrix. If A is non–singular, the
homogeneous system AX = 0 has only the trivial solution. Equivalently,
if the homogenous system AX = 0 has a non–trivial solution, then A is
singular.

Proof. If A is non–singular and AX = 0, then X = A−10 = 0.

REMARK 2.5.4 If A∗1, . . . , A∗n denote the columns of A, then the equa-
tion

AX = x1A∗1 + . . .+ xnA∗n

holds. Consequently theorem 2.5.6 tells us that if there exist scalars x1, . . . , xn,
not all zero, such that

x1A∗1 + . . .+ xnA∗n = 0,
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that is, if the columns of A are linearly dependent, then A is singular. An
equivalent way of saying that the columns of A are linearly dependent is that
one of the columns of A is expressible as a sum of certain scalar multiples
of the remaining columns of A; that is one column is a linear combination
of the remaining columns.

EXAMPLE 2.5.5

A =





1 2 3
1 0 1
3 4 7





is singular. For it can be verified that A has reduced row–echelon form





1 0 1
0 1 1
0 0 0





and consequently AX = 0 has a non–trivial solution x = −1, y = −1, z = 1.

REMARK 2.5.5 More generally, if A is row–equivalent to a matrix con-
taining a zero row, then A is singular. For then the homogeneous system
AX = 0 has a non–trivial solution.

An important class of non–singular matrices is that of the elementary
row matrices.

DEFINITION 2.5.2 (Elementary row matrices) There are three types,
Eij , Ei(t), Eij(t), corresponding to the three kinds of elementary row oper-
ation:

1. Eij , (i 6= j) is obtained from the identity matrix In by interchanging
rows i and j.

2. Ei(t), (t 6= 0) is obtained by multiplying the i–th row of In by t.

3. Eij(t), (i 6= j) is obtained from In by adding t times the j–th row of
In to the i–th row.

EXAMPLE 2.5.6 (n = 3.)

E23 =





1 0 0
0 0 1
0 1 0



 , E2(−1) =





1 0 0
0 −1 0
0 0 1



 , E23(−1) =





1 0 0
0 1 −1
0 0 1



 .
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The elementary row matrices have the following distinguishing property:

THEOREM 2.5.7 If a matrix A is pre–multiplied by an elementary row–
matrix, the resulting matrix is the one obtained by performing the corre-
sponding elementary row–operation on A.

EXAMPLE 2.5.7

E23





a b
c d
e f



 =





1 0 0
0 0 1
0 1 0









a b
c d
e f



 =





a b
e f
c d



 .

COROLLARY 2.5.2 The three types of elementary row–matrices are non–
singular. Indeed

1. E−1ij = Eij ;

2. E−1i (t) = Ei(t
−1);

3. (Eij(t))
−1 = Eij(−t).

Proof. Taking A = In in the above theorem, we deduce the following
equations:

EijEij = In

Ei(t)Ei(t
−1) = In = Ei(t

−1)Ei(t) if t 6= 0
Eij(t)Eij(−t) = In = Eij(−t)Eij(t).

EXAMPLE 2.5.8 Find the 3 × 3 matrix A = E3(5)E23(2)E12 explicitly.
Also find A−1.

Solution.

A = E3(5)E23(2)





0 1 0
1 0 0
0 0 1



 = E3(5)





0 1 0
1 0 2
0 0 1



 =





0 1 0
1 0 2
0 0 5



 .

To find A−1, we have

A−1 = (E3(5)E23(2)E12)
−1

= E−112 (E23(2))
−1 (E3(5))

−1

= E12E23(−2)E3(5−1)
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= E12E23(−2)





1 0 0
0 1 0
0 0 1

5





= E12





1 0 0
0 1 −25
0 0 1

5



 =





0 1 −25
1 0 0
0 0 1

5



 .

REMARK 2.5.6 Recall that A and B are row–equivalent if B is obtained
from A by a sequence of elementary row operations. If E1, . . . , Er are the
respective corresponding elementary row matrices, then

B = Er (. . . (E2(E1A)) . . .) = (Er . . . E1)A = PA,

where P = Er . . . E1 is non–singular. Conversely if B = PA, where P is
non–singular, then A is row–equivalent to B. For as we shall now see, P is
in fact a product of elementary row matrices.

THEOREM 2.5.8 Let A be non–singular n× n matrix. Then

(i) A is row–equivalent to In,

(ii) A is a product of elementary row matrices.

Proof. Assume that A is non–singular and let B be the reduced row–echelon
form of A. Then B has no zero rows, for otherwise the equation AX = 0
would have a non–trivial solution. Consequently B = In.

It follows that there exist elementary row matrices E1, . . . , Er such that
Er (. . . (E1A) . . .) = B = In and hence A = E−11 . . . E−1r , a product of
elementary row matrices.

THEOREM 2.5.9 Let A be n× n and suppose that A is row–equivalent
to In. Then A is non–singular and A

−1 can be found by performing the
same sequence of elementary row operations on In as were used to convert
A to In.

Proof. Suppose that Er . . . E1A = In. In other words BA = In, where
B = Er . . . E1 is non–singular. Then B

−1(BA) = B−1In and so A = B−1,
which is non–singular.

Also A−1 =
(

B−1
)−1

= B = Er ((. . . (E1In) . . .), which shows that A
−1

is obtained from In by performing the same sequence of elementary row
operations as were used to convert A to In.
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REMARK 2.5.7 It follows from theorem 2.5.9 that if A is singular, then
A is row–equivalent to a matrix whose last row is zero.

EXAMPLE 2.5.9 Show that A =

[

1 2
1 1

]

is non–singular, find A−1 and

express A as a product of elementary row matrices.

Solution. We form the partitionedmatrix [A|I2] which consists ofA followed
by I2. Then any sequence of elementary row operations which reduces A to
I2 will reduce I2 to A

−1. Here

[A|I2] =
[

1 2 1 0
1 1 0 1

]

R2 → R2 −R1
[

1 2 1 0
0 −1 −1 1

]

R2 → (−1)R2
[

1 2 1 0
0 1 1 −1

]

R1 → R1 − 2R2
[

1 0 −1 2
0 1 1 −1

]

.

Hence A is row–equivalent to I2 and A is non–singular. Also

A−1 =

[

−1 2
1 −1

]

.

We also observe that

E12(−2)E2(−1)E21(−1)A = I2.

Hence

A−1 = E12(−2)E2(−1)E21(−1)
A = E21(1)E2(−1)E12(2).

The next result is the converse of Theorem 2.5.6 and is useful for proving
the non–singularity of certain types of matrices.

THEOREM 2.5.10 Let A be an n × n matrix with the property that
the homogeneous system AX = 0 has only the trivial solution. Then A is
non–singular. Equivalently, if A is singular, then the homogeneous system
AX = 0 has a non–trivial solution.
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Proof. If A is n × n and the homogeneous system AX = 0 has only the
trivial solution, then it follows that the reduced row–echelon form B of A
cannot have zero rows and must therefore be In. Hence A is non–singular.

COROLLARY 2.5.3 Suppose that A and B are n × n and AB = In.
Then BA = In.

Proof. Let AB = In, where A and B are n × n. We first show that B
is non–singular. Assume BX = 0. Then A(BX) = A0 = 0, so (AB)X =
0, InX = 0 and hence X = 0.
Then from AB = In we deduce (AB)B

−1 = InB
−1 and hence A = B−1.

The equation BB−1 = In then gives BA = In.

Before we give the next example of the above criterion for non-singularity,
we introduce an important matrix operation.

DEFINITION 2.5.3 (The transpose of a matrix) Let A be an m×n
matrix. Then At, the transpose of A, is the matrix obtained by interchanging
the rows and columns of A. In other words if A = [aij ], then

(

At
)

ji
= aij .

Consequently At is n×m.

The transpose operation has the following properties:

1.
(

At
)t
= A;

2. (A±B)t = At ±Bt if A and B are m× n;

3. (sA)t = sAt if s is a scalar;

4. (AB)t = BtAt if A is m× n and B is n× p;

5. If A is non–singular, then At is also non–singular and

(

At
)−1

=
(

A−1
)t
;

6. XtX = x21 + . . .+ x
2
n if X = [x1, . . . , xn]

t is a column vector.

We prove only the fourth property. First check that both (AB)t and BtAt

have the same size (p × m). Moreover, corresponding elements of both
matrices are equal. For if A = [aij ] and B = [bjk], we have

(

(AB)t
)

ki
= (AB)ik

=
n
∑

j=1

aijbjk
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=
n
∑

j=1

(

Bt
)

kj

(

At
)

ji

=
(

BtAt
)

ki
.

There are two important classes of matrices that can be defined concisely
in terms of the transpose operation.

DEFINITION 2.5.4 (Symmetric matrix) A real matrixA is called sym-
metric if At = A. In other words A is square (n × n say) and aji = aij for
all 1 ≤ i ≤ n, 1 ≤ j ≤ n. Hence

A =

[

a b
b c

]

is a general 2× 2 symmetric matrix.
DEFINITION 2.5.5 (Skew–symmetric matrix) A real matrixA is called
skew–symmetric if At = −A. In other words A is square (n × n say) and
aji = −aij for all 1 ≤ i ≤ n, 1 ≤ j ≤ n.

REMARK 2.5.8 Taking i = j in the definition of skew–symmetric matrix
gives aii = −aii and so aii = 0. Hence

A =

[

0 b
−b 0

]

is a general 2× 2 skew–symmetric matrix.
We can now state a second application of the above criterion for non–
singularity.

COROLLARY 2.5.4 Let B be an n × n skew–symmetric matrix. Then
A = In −B is non–singular.
Proof. Let A = In − B, where Bt = −B. By Theorem 2.5.10 it suffices to
show that AX = 0 implies X = 0.
We have (In −B)X = 0, so X = BX. Hence X tX = XtBX.

Taking transposes of both sides gives

(XtBX)t = (XtX)t

XtBt(Xt)t = Xt(Xt)t

Xt(−B)X = XtX

−XtBX = XtX = XtBX.

Hence XtX = −XtX and XtX = 0. But if X = [x1, . . . , xn]
t, then XtX =

x21 + . . .+ x
2
n = 0 and hence x1 = 0, . . . , xn = 0.
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2.6 Least squares solution of equations

Suppose AX = B represents a system of linear equations with real coeffi-
cients which may be inconsistent, because of the possibility of experimental
errors in determining A or B. For example, the system

x = 1

y = 2

x+ y = 3.001

is inconsistent.
It can be proved that the associated system AtAX = AtB is always

consistent and that any solution of this system minimizes the sum r21+ . . .+
r2m, where r1, . . . , rm (the residuals) are defined by

ri = ai1x1 + . . .+ ainxn − bi,

for i = 1, . . . ,m. The equations represented by AtAX = AtB are called the
normal equations corresponding to the system AX = B and any solution
of the system of normal equations is called a least squares solution of the
original system.

EXAMPLE 2.6.1 Find a least squares solution of the above inconsistent
system.

Solution. Here A =





1 0
0 1
1 1



 , X =

[

x
y

]

, B =





1
2

3.001



.

Then AtA =

[

1 0 1
0 1 1

]





1 0
0 1
1 1



 =

[

2 1
1 2

]

.

Also AtB =

[

1 0 1
0 1 1

]





1
2

3.001



 =

[

4.001
5.001

]

.

So the normal equations are

2x+ y = 4.001

x+ 2y = 5.001

which have the unique solution

x =
3.001

3
, y =

6.001

3
.
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EXAMPLE 2.6.2 Points (x1, y1), . . . , (xn, yn) are experimentally deter-
mined and should lie on a line y = mx+ c. Find a least squares solution to
the problem.

Solution. The points have to satisfy

mx1 + c = y1
...

mxn + c = yn,

or Ax = B, where

A =







x1 1
...

...
xn 1






, X =

[

m
c

]

, B =







y1
...
yn






.

The normal equations are given by (AtA)X = AtB. Here

AtA =

[

x1 . . . xn
1 . . . 1

]







x1 1
...

...
xn 1






=

[

x21 + . . .+ x
2
n x1 + . . .+ xn

x1 + . . .+ xn n

]

Also

AtB =

[

x1 . . . xn
1 . . . 1

]







y1
...
yn






=

[

x1y1 + . . .+ xnyn
y1 + . . .+ yn

]

.

It is not difficult to prove that

∆ = det (AtA) =
∑

1≤i<j≤n
(xi − xj)2,

which is positive unless x1 = . . . = xn. Hence if not all of x1, . . . , xn are
equal, AtA is non–singular and the normal equations have a unique solution.
This can be shown to be

m =
1

∆

∑

1≤i<j≤n
(xi − xj)(yi − yj), c =

1

∆

∑

1≤i<j≤n
(xiyj − xjyi)(xi − xj).

REMARK 2.6.1 The matrix AtA is symmetric.
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2.7 PROBLEMS

1. Let A =

[

1 4
−3 1

]

. Prove that A is non–singular, find A−1 and

express A as a product of elementary row matrices.

[Answer: A−1 =

[

1
13 − 4

13
3
13

1
13

]

,

A = E21(−3)E2(13)E12(4) is one such decomposition.]

2. A square matrix D = [dij ] is called diagonal if dij = 0 for i 6= j. (That
is the off–diagonal elements are zero.) Prove that pre–multiplication
of a matrix A by a diagonal matrix D results in matrix DA whose
rows are the rows of A multiplied by the respective diagonal elements
of D. State and prove a similar result for post–multiplication by a
diagonal matrix.

Let diag (a1, . . . , an) denote the diagonal matrix whose diagonal ele-
ments dii are a1, . . . , an, respectively. Show that

diag (a1, . . . , an)diag (b1, . . . , bn) = diag (a1b1, . . . , anbn)

and deduce that if a1 . . . an 6= 0, then diag (a1, . . . , an) is non–singular
and

(diag (a1, . . . , an))
−1 = diag (a−11 , . . . , a−1n ).

Also prove that diag (a1, . . . , an) is singular if ai = 0 for some i.

3. Let A =





0 0 2
1 2 6
3 7 9



. Prove that A is non–singular, find A−1 and

express A as a product of elementary row matrices.

[Answers: A−1 =





−12 7 −2
9
2 −3 1
1
2 0 0



,

A = E12E31(3)E23E3(2)E12(2)E13(24)E23(−9) is one such decompo-
sition.]
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4. Find the rational number k for which the matrix A =





1 2 k
3 −1 1
5 3 −5





is singular. [Answer: k = −3.]

5. Prove that A =

[

1 2
−2 −4

]

is singular and find a non–singular matrix

P such that PA has last row zero.

6. If A =

[

1 4
−3 1

]

, verify that A2 − 2A + 13I2 = 0 and deduce that

A−1 = − 1
13(A− 2I2).

7. Let A =





1 1 −1
0 0 1
2 1 2



.

(i) Verify that A3 = 3A2 − 3A+ I3.
(ii) Express A4 in terms of A2, A and I3 and hence calculate A

4

explicitly.

(iii) Use (i) to prove that A is non–singular and find A−1 explicitly.

[Answers: (ii) A4 = 6A2 − 8A+ 3I3 =





−11 −8 −4
12 9 4
20 16 5



;

(iii) A−1 = A2 − 3A+ 3I3 =





−1 −3 1
2 4 −1
0 1 0



.]

8. (i) Let B be an n×n matrix such that B3 = 0. If A = In−B, prove
that A is non–singular and A−1 = In +B +B

2.

Show that the system of linear equations AX = b has the solution

X = b+Bb+B2b.

(ii) If B =





0 r s
0 0 t
0 0 0



, verify that B3 = 0 and use (i) to determine

(I3 −B)−1 explicitly.
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[Answer:





1 r s+ rt
0 1 t
0 0 1



.]

9. Let A be n× n.

(i) If A2 = 0, prove that A is singular.

(ii) If A2 = A and A 6= In, prove that A is singular.

10. Use Question 7 to solve the system of equations

x+ y − z = a

z = b

2x+ y + 2z = c

where a, b, c are given rationals. Check your answer using the Gauss–
Jordan algorithm.

[Answer: x = −a− 3b+ c, y = 2a+ 4b− c, z = b.]

11. Determine explicitly the following products of 3 × 3 elementary row
matrices.

(i) E12E23 (ii) E1(5)E12 (iii) E12(3)E21(−3) (iv) (E1(100))
−1

(v) E−112 (vi) (E12(7))
−1 (vii) (E12(7)E31(1))

−1.

[Answers: (i)





0 0 1
1 0 0
0 1 0



 (ii)





0 5 0
1 0 0
0 0 1



 (iii)





−8 3 0
−3 1 0
0 0 1





(iv)





1
100 0 0
0 1 0
0 0 1



 (v)





0 1 0
1 0 0
0 0 1



 (vi)





1 −7 0
0 1 0
0 0 1



 (vii)





1 −7 0
0 1 0

−1 7 1



.]

12. Let A be the following product of 4× 4 elementary row matrices:
A = E3(2)E14E42(3).

Find A and A−1 explicitly.

[Answers: A =









0 3 0 1
0 1 0 0
0 0 2 0
1 0 0 0









, A−1 =









0 0 0 1
0 1 0 0
0 0 1

2 0
1 −3 0 0









.]
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13. Determine which of the following matrices over Z2 are non–singular
and find the inverse, where possible.

(a)









1 1 0 1
0 0 1 1
1 1 1 1
1 0 0 1









(b)









1 1 0 1
0 1 1 1
1 0 1 0
1 1 0 1









.

[Answer: (a)









1 1 1 1
1 0 0 1
1 0 1 0
1 1 1 0









.]

14. Determine which of the following matrices are non–singular and find
the inverse, where possible.

(a)





1 1 1
−1 1 0
2 0 0



 (b)





2 2 4
1 0 1
0 1 0



 (c)





4 6 −3
0 0 7
0 0 5





(d)





2 0 0
0 −5 0
0 0 7



 (e)









1 2 4 6
0 1 2 0
0 0 1 2
0 0 0 2









(f)





1 2 3
4 5 6
5 7 9



.

[Answers: (a)





0 0 1
2

0 1 1
2

1 −1 −1



 (b)





−12 2 1
0 0 1
1
2 −1 −1



 (d)





1
2 0 0
0 −15 0
0 0 1

7





(e)









1 −2 0 −3
0 1 −2 2
0 0 1 −1
0 0 0 1

2









.]

15. Let A be a non–singular n× n matrix. Prove that At is non–singular
and that (At)−1 = (A−1)t.

16. Prove that A =

[

a b
c d

]

has no inverse if ad− bc = 0.

[Hint: Use the equation A2 − (a+ d)A+ (ad− bc)I2 = 0.]
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17. Prove that the real matrix A =





1 a b
−a 1 c
−b −c 1



 is non–singular by

proving that A is row–equivalent to I3.

18. If P−1AP = B, prove that P−1AnP = Bn for n ≥ 1.

19. Let A =

[

2
3

1
4

1
3

3
4

]

, P =

[

1 3
−1 4

]

. Verify that P−1AP =

[

5
12 0
0 1

]

and deduce that

An =
1

7

[

3 3
4 4

]

+
1

7

(

5

12

)n [
4 −3

−4 3

]

.

20. Let A =

[

a b
c d

]

be aMarkovmatrix; that is a matrix whose elements

are non–negative and satisfy a+c = 1 = b+d. Also let P =

[

b 1
c −1

]

.

Prove that if A 6= I2 then

(i) P is non–singular and P−1AP =

[

1 0
0 a+ d− 1

]

,

(ii) An → 1

b+ c

[

b b
c c

]

as n→∞, if A 6=
[

0 1
1 0

]

.

21. If X =





1 2
3 4
5 6



 and Y =





−1
3
4



, find XXt, XtX, Y Y t, Y tY .

[Answers:





5 11 17
11 25 39
17 39 61



 ,

[

35 44
44 56

]

,





1 −3 −4
−3 9 12
−4 12 16



 , 26.]

22. Prove that the system of linear equations

x+ 2y = 4
x+ y = 5

3x+ 5y = 12

is inconsistent and find a least squares solution of the system.

[Answer: x = 6, y = −7/6.]
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23. The points (0, 0), (1, 0), (2, −1), (3, 4), (4, 8) are required to lie on a
parabola y = a + bx + cx2. Find a least squares solution for a, b, c.
Also prove that no parabola passes through these points.

[Answer: a = 1
5 , b = −2, c = 1.]

24. If A is a symmetric n×n real matrix and B is n×m, prove that BtAB
is a symmetric m×m matrix.

25. If A is m× n and B is n×m, prove that AB is singular if m > n.

26. Let A and B be n × n. If A or B is singular, prove that AB is also
singular.



Chapter 3

SUBSPACES

3.1 Introduction

Throughout this chapter, we will be studying F n, the set of all n–dimensional
column vectors with components from a field F . We continue our study of
matrices by considering an important class of subsets of F n called subspaces.
These arise naturally for example, when we solve a system of m linear ho-
mogeneous equations in n unknowns.
We also study the concept of linear dependence of a family of vectors.

This was introduced briefly in Chapter 2, Remark 2.5.4. Other topics dis-
cussed are the row space, column space and null space of a matrix over F ,
the dimension of a subspace, particular examples of the latter being the rank
and nullity of a matrix.

3.2 Subspaces of F n

DEFINITION 3.2.1 A subset S of F n is called a subspace of F n if

1. The zero vector belongs to S; (that is, 0 ∈ S);

2. If u ∈ S and v ∈ S, then u + v ∈ S; (S is said to be closed under
vector addition);

3. If u ∈ S and t ∈ F , then tu ∈ S; (S is said to be closed under scalar
multiplication).

EXAMPLE 3.2.1 Let A ∈ Mm×n(F ). Then the set of vectors X ∈ F n

satisfying AX = 0 is a subspace of F n called the null space of A and is
denoted here by N(A). (It is sometimes called the solution space of A.)

55
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Proof. (1) A0 = 0, so 0 ∈ N(A); (2) If X, Y ∈ N(A), then AX = 0 and
AY = 0, so A(X + Y ) = AX +AY = 0 + 0 = 0 and so X + Y ∈ N(A); (3)
If X ∈ N(A) and t ∈ F , then A(tX) = t(AX) = t0 = 0, so tX ∈ N(A).

For example, if A =

[

1 0
0 1

]

, then N(A) = {0}, the set consisting of

just the zero vector. If A =

[

1 2
2 4

]

, then N(A) is the set of all scalar

multiples of [−2, 1]t.

EXAMPLE 3.2.2 Let X1, . . . , Xm ∈ Fn. Then the set consisting of all
linear combinations x1X1 + · · · + xmXm, where x1, . . . , xm ∈ F , is a sub-
space of F n. This subspace is called the subspace spanned or generated by
X1, . . . , Xm and is denoted here by 〈X1, . . . , Xm〉. We also call X1, . . . , Xm

a spanning family for S = 〈X1, . . . , Xm〉.

Proof. (1) 0 = 0X1 + · · · + 0Xm, so 0 ∈ 〈X1, . . . , Xm〉; (2) If X, Y ∈
〈X1, . . . , Xm〉, then X = x1X1 + · · ·+ xmXm and Y = y1X1 + · · ·+ ymXm,
so

X + Y = (x1X1 + · · ·+ xmXm) + (y1X1 + · · ·+ ymXm)

= (x1 + y1)X1 + · · ·+ (xm + ym)Xm ∈ 〈X1, . . . , Xm〉.

(3) If X ∈ 〈X1, . . . , Xm〉 and t ∈ F , then

X = x1X1 + · · ·+ xmXm

tX = t(x1X1 + · · ·+ xmXm)

= (tx1)X1 + · · ·+ (txm)Xm ∈ 〈X1, . . . , Xm〉.

For example, if A ∈Mm×n(F ), the subspace generated by the columns of A
is an important subspace of Fm and is called the column space of A. The
column space of A is denoted here by C(A). Also the subspace generated
by the rows of A is a subspace of F n and is called the row space of A and is
denoted by R(A).

EXAMPLE 3.2.3 For example F n = 〈E1, . . . , En〉, where E1, . . . , En are
the n–dimensional unit vectors. For if X = [x1, . . . , xn]

t ∈ Fn, then X =
x1E1 + · · ·+ xnEn.

EXAMPLE 3.2.4 Find a spanning family for the subspace S of R3 defined
by the equation 2x− 3y + 5z = 0.
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Solution. (S is in fact the null space of [2, −3, 5], so S is indeed a subspace
of R3.)
If [x, y, z]t ∈ S, then x = 3

2y − 5
2z. Then





x
y
z



 =





3
2y − 5

2z
y
z



 = y





3
2
1
0



+ z





−52
0
1





and conversely. Hence [ 32 , 1, 0]
t and [−52 , 0, 1]t form a spanning family for

S.
The following result is easy to prove:

LEMMA 3.2.1 Suppose each of X1, . . . , Xr is a linear combination of
Y1, . . . , Ys. Then any linear combination of X1, . . . , Xr is a linear combi-
nation of Y1, . . . , Ys.

As a corollary we have

THEOREM 3.2.1 Subspaces 〈X1, . . . , Xr〉 and 〈Y1, . . . , Ys〉 are equal if
each ofX1, . . . , Xr is a linear combination of Y1, . . . , Ys and each of Y1, . . . , Ys
is a linear combination of X1, . . . , Xr.

COROLLARY 3.2.1 Subspaces 〈X1, . . . , Xr, Z1, . . . , Zt〉 and 〈X1, . . . , Xr〉
are equal if each of Z1, . . . , Zt is a linear combination of X1, . . . , Xr.

EXAMPLE 3.2.5 If X and Y are vectors in Rn, then

〈X, Y 〉 = 〈X + Y, X − Y 〉.

Solution. Each of X + Y and X − Y is a linear combination of X and Y .
Also

X =
1

2
(X + Y ) +

1

2
(X − Y ) and Y =

1

2
(X + Y )− 1

2
(X − Y ),

so each of X and Y is a linear combination of X + Y and X − Y .
There is an important application of Theorem 3.2.1 to row equivalent

matrices (see Definition 1.2.4):

THEOREM 3.2.2 If A is row equivalent to B, then R(A) = R(B).

Proof. Suppose that B is obtained from A by a sequence of elementary row
operations. Then it is easy to see that each row of B is a linear combination
of the rows of A. But A can be obtained from B by a sequence of elementary
operations, so each row of A is a linear combination of the rows of B. Hence
by Theorem 3.2.1, R(A) = R(B).
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REMARK 3.2.1 If A is row equivalent to B, it is not always true that
C(A) = C(B).

For example, if A =

[

1 1
1 1

]

and B =

[

1 1
0 0

]

, then B is in fact the

reduced row–echelon form of A. However we see that

C(A) =

〈[

1
1

]

,

[

1
1

]〉

=

〈[

1
1

]〉

and similarly C(B) =

〈[

1
0

]〉

.

Consequently C(A) 6= C(B), as

[

1
1

]

∈ C(A) but
[

1
1

]

6∈ C(B).

3.3 Linear dependence

We now recall the definition of linear dependence and independence of a
family of vectors in F n given in Chapter 2.

DEFINITION 3.3.1 Vectors X1, . . . , Xm in Fn are said to be linearly
dependent if there exist scalars x1, . . . , xm, not all zero, such that

x1X1 + · · ·+ xmXm = 0.

In other words, X1, . . . , Xm are linearly dependent if some Xi is expressible
as a linear combination of the remaining vectors.

X1, . . . , Xm are called linearly independent if they are not linearly depen-
dent. Hence X1, . . . , Xm are linearly independent if and only if the equation

x1X1 + · · ·+ xmXm = 0

has only the trivial solution x1 = 0, . . . , xm = 0.

EXAMPLE 3.3.1 The following three vectors in R3

X1 =





1
2
3



 , X2 =





−1
1
2



 , X3 =





−1
7
12





are linearly dependent, as 2X1 + 3X2 + (−1)X3 = 0.
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REMARK 3.3.1 If X1, . . . , Xm are linearly independent and

x1X1 + · · ·+ xmXm = y1X1 + · · ·+ ymXm,

then x1 = y1, . . . , xm = ym. For the equation can be rewritten as

(x1 − y1)X1 + · · ·+ (xm − ym)Xm = 0

and so x1 − y1 = 0, . . . , xm − ym = 0.

THEOREM 3.3.1 A family of m vectors in F n will be linearly dependent
if m > n. Equivalently, any linearly independent family of m vectors in F n

must satisfy m ≤ n.

Proof. The equation

x1X1 + · · ·+ xmXm = 0

is equivalent to n homogeneous equations inm unknowns. By Theorem 1.5.1,
such a system has a non–trivial solution if m > n.

The following theorem is an important generalization of the last result
and is left as an exercise for the interested student:

THEOREM 3.3.2 A family of s vectors in 〈X1, . . . , Xr〉 will be linearly
dependent if s > r. Equivalently, a linearly independent family of s vectors
in 〈X1, . . . , Xr〉 must have s ≤ r.

Here is a useful criterion for linear independence which is sometimes
called the left–to–right test:

THEOREM 3.3.3 Vectors X1, . . . , Xm in F
n are linearly independent if

(a) X1 6= 0;

(b) For each k with 1 < k ≤ m, Xk is not a linear combination of
X1, . . . , Xk−1.

One application of this criterion is the following result:

THEOREM 3.3.4 Every subspace S of F n can be represented in the form
S = 〈X1, . . . , Xm〉, where m ≤ n.
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Proof. If S = {0}, there is nothing to prove – we take X1 = 0 and m = 1.
So we assume S contains a non–zero vector X1; then 〈X1〉 ⊆ S as S is a

subspace. If S = 〈X1〉, we are finished. If not, S will contain a vector X2,
not a linear combination of X1; then 〈X1, X2〉 ⊆ S as S is a subspace. If
S = 〈X1, X2〉, we are finished. If not, S will contain a vector X3 which is
not a linear combination of X1 and X2. This process must eventually stop,
for at stage k we have constructed a family of k linearly independent vectors
X1, . . . , Xk, all lying in F

n and hence k ≤ n.

There is an important relationship between the columns of A and B, if
A is row–equivalent to B.

THEOREM 3.3.5 Suppose that A is row equivalent to B and let c1, . . . , cr
be distinct integers satisfying 1 ≤ ci ≤ n. Then

(a) Columns A∗c1 , . . . , A∗cr of A are linearly dependent if and only if the
corresponding columns of B are linearly dependent; indeed more is
true:

x1A∗c1 + · · ·+ xrA∗cr = 0⇔ x1B∗c1 + · · ·+ xrB∗cr = 0.

(b) Columns A∗c1 , . . . , A∗cr of A are linearly independent if and only if the
corresponding columns of B are linearly independent.

(c) If 1 ≤ cr+1 ≤ n and cr+1 is distinct from c1, . . . , cr, then

A∗cr+1 = z1A∗c1 + · · ·+ zrA∗cr ⇔ B∗cr+1 = z1B∗c1 + · · ·+ zrB∗cr .

Proof. First observe that if Y = [y1, . . . , yn]
t is an n–dimensional column

vector and A is m× n, then

AY = y1A∗1 + · · ·+ ynA∗n.

Also AY = 0 ⇔ BY = 0, if B is row equivalent to A. Then (a) follows by
taking yi = xcj if i = cj and yi = 0 otherwise.

(b) is logically equivalent to (a), while (c) follows from (a) as

A∗cr+1 = z1A∗c1 + · · ·+ zrA∗cr ⇔ z1A∗c1 + · · ·+ zrA∗cr + (−1)A∗cr+1 = 0

⇔ z1B∗c1 + · · ·+ zrB∗cr + (−1)B∗cr+1 = 0

⇔ B∗cr+1 = z1B∗c1 + · · ·+ zrB∗cr .
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EXAMPLE 3.3.2 The matrix

A =





1 1 5 1 4
2 −1 1 2 2
3 0 6 0 −3





has reduced row–echelon form equal to

B =





1 0 2 0 −1
0 1 3 0 2
0 0 0 1 3



 .

We notice that B∗1, B∗2 and B∗4 are linearly independent and hence so are
A∗1, A∗2 and A∗4. Also

B∗3 = 2B∗1 + 3B∗2
B∗5 = (−1)B∗1 + 2B∗2 + 3B∗4,

so consequently

A∗3 = 2A∗1 + 3A∗2
A∗5 = (−1)A∗1 + 2A∗2 + 3A∗4.

3.4 Basis of a subspace

We now come to the important concept of basis of a vector subspace.

DEFINITION 3.4.1 Vectors X1, . . . , Xm belonging to a subspace S are
said to form a basis of S if

(a) Every vector in S is a linear combination of X1, . . . , Xm;

(b) X1, . . . , Xm are linearly independent.

Note that (a) is equivalent to the statement that S = 〈X1, . . . , Xm〉 as we
automatically have 〈X1, . . . , Xm〉 ⊆ S. Also, in view of Remark 3.3.1 above,
(a) and (b) are equivalent to the statement that every vector in S is uniquely
expressible as a linear combination of X1, . . . , Xm.

EXAMPLE 3.4.1 The unit vectors E1, . . . , En form a basis for F
n.
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REMARK 3.4.1 The subspace {0}, consisting of the zero vector alone,
does not have a basis. For every vector in a linearly independent family
must necessarily be non–zero. (For example, if X1 = 0, then we have the
non–trivial linear relation

1X1 + 0X2 + · · ·+ 0Xm = 0

and X1, . . . , Xm would be linearly dependent.)

However if we exclude this case, every other subspace of F n has a basis:

THEOREM 3.4.1 A subspace of the form 〈X1, . . . , Xm〉, where at least
one of X1, . . . , Xm is non–zero, has a basis Xc1 , . . . , Xcr , where 1 ≤ c1 <
· · · < cr ≤ m.

Proof. (The left–to–right algorithm). Let c1 be the least index k for which
Xk is non–zero. If c1 = m or if all the vectors Xk with k > c1 are linear
combinations of Xc1 , terminate the algorithm and let r = 1. Otherwise let
c2 be the least integer k > c1 such that Xk is not a linear combination of
Xc1 .
If c2 = m or if all the vectors Xk with k > c2 are linear combinations

of Xc1 and Xc2 , terminate the algorithm and let r = 2. Eventually the
algorithm will terminate at the r–th stage, either because cr = m, or because
all vectors Xk with k > cr are linear combinations of Xc1 , . . . , Xcr .
Then it is clear by the construction of Xc1 , . . . , Xcr , using Corollary 3.2.1

that

(a) 〈Xc1 , . . . , Xcr〉 = 〈X1, . . . , Xm〉;

(b) the vectors Xc1 , . . . , Xcr are linearly independent by the left–to–right
test.

Consequently Xc1 , . . . , Xcr form a basis (called the left–to–right basis) for
the subspace 〈X1, . . . , Xm〉.
EXAMPLE 3.4.2 Let X and Y be linearly independent vectors in Rn.
Then the subspace 〈0, 2X, X, −Y, X+Y 〉 has left–to–right basis consisting
of 2X, −Y .
A subspace S will in general have more than one basis. For example, any
permutation of the vectors in a basis will yield another basis. Given one
particular basis, one can determine all bases for S using a simple formula.
This is left as one of the problems at the end of this chapter.
We settle for the following important fact about bases:
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THEOREM 3.4.2 Any two bases for a subspace S must contain the same
number of elements.

Proof. For if X1, . . . , Xr and Y1, . . . , Ys are bases for S, then Y1, . . . , Ys
form a linearly independent family in S = 〈X1, . . . , Xr〉 and hence s ≤ r by
Theorem 3.3.2. Similarly r ≤ s and hence r = s.

DEFINITION 3.4.2 This number is called the dimension of S and is
written dimS. Naturally we define dim {0} = 0.

It follows from Theorem 3.3.1 that for any subspace S of F n, we must have
dimS ≤ n.

EXAMPLE 3.4.3 If E1, . . . , En denote the n–dimensional unit vectors in
Fn, then dim 〈E1, . . . , Ei〉 = i for 1 ≤ i ≤ n.

The following result gives a useful way of exhibiting a basis.

THEOREM 3.4.3 A linearly independent family of m vectors in a sub-
space S, with dimS = m, must be a basis for S.

Proof. Let X1, . . . , Xm be a linearly independent family of vectors in a
subspace S, where dimS = m. We have to show that every vector X ∈ S is
expressible as a linear combination ofX1, . . . , Xm. We consider the following
family of vectors in S: X1, . . . , Xm, X. This family contains m+1 elements
and is consequently linearly dependent by Theorem 3.3.2. Hence we have

x1X1 + · · ·+ xmXm + xm+1X = 0, (3.1)

where not all of x1, . . . , xm+1 are zero. Now if xm+1 = 0, we would have

x1X1 + · · ·+ xmXm = 0,

with not all of x1, . . . , xm zero, contradictiong the assumption thatX1 . . . , Xm

are linearly independent. Hence xm+1 6= 0 and we can use equation 3.1 to
express X as a linear combination of X1, . . . , Xm:

X =
−x1
xm+1

X1 + · · ·+
−xm
xm+1

Xm.
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3.5 Rank and nullity of a matrix

We can now define three important integers associated with a matrix.

DEFINITION 3.5.1 Let A ∈Mm×n(F ). Then

(a) column rankA =dimC(A);

(b) row rankA =dimR(A);

(c) nullityA =dimN(A).

We will now see that the reduced row–echelon form B of a matrix A allows
us to exhibit bases for the row space, column space and null space of A.
Moreover, an examination of the number of elements in each of these bases
will immediately result in the following theorem:

THEOREM 3.5.1 Let A ∈Mm×n(F ). Then

(a) column rankA =row rankA;

(b) column rankA+nullityA = n.

Finding a basis for R(A): The r non–zero rows of B form a basis for R(A)
and hence row rankA = r.
For we have seen earlier that R(A) = R(B). Also

R(B) = 〈B1∗, . . . , Bm∗〉
= 〈B1∗, . . . , Br∗, 0 . . . , 0〉
= 〈B1∗, . . . , Br∗〉.

The linear independence of the non–zero rows of B is proved as follows: Let
the leading entries of rows 1, . . . , r of B occur in columns c1, . . . , cr. Suppose
that

x1B1∗ + · · ·+ xrBr∗ = 0.

Then equating components c1, . . . , cr of both sides of the last equation, gives
x1 = 0, . . . , xr = 0, in view of the fact that B is in reduced row– echelon
form.

Finding a basis for C(A): The r columns A∗c1 , . . . , A∗cr form a basis for
C(A) and hence column rank A = r. For it is clear that columns c1, . . . , cr
of B form the left–to–right basis for C(B) and consequently from parts (b)
and (c) of Theorem 3.3.5, it follows that columns c1, . . . , cr of A form the
left–to–right basis for C(A).
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Finding a basis for N(A): For notational simplicity, let us suppose that c1 =
1, . . . , cr = r. Then B has the form

B =

























1 0 · · · 0 b1r+1 · · · b1n
0 1 · · · 0 b2r+1 · · · b2n
...
... · · · ...

... · · · ...
0 0 · · · 1 brr+1 · · · brn
0 0 · · · 0 0 · · · 0
...
... · · · ...

... · · · ...
0 0 · · · 0 0 · · · 0

























.

Then N(B) and hence N(A) are determined by the equations

x1 = (−b1r+1)xr+1 + · · ·+ (−b1n)xn
...

xr = (−brr+1)xr+1 + · · ·+ (−brn)xn,

where xr+1, . . . , xn are arbitrary elements of F . Hence the general vector X
in N(A) is given by





















x1
...
xr
xr+1
...
xn





















= xr+1





















−b1r+1
...

−brr+1
1
...
0





















+ · · ·+ xn





















−bn
...

−brn
0
...
1





















(3.2)

= xr+1X1 + · · ·+ xnXn−r.

Hence N(A) is spanned by X1, . . . , Xn−r, as xr+1, . . . , xn are arbitrary. Also
X1, . . . , Xn−r are linearly independent. For equating the right hand side of
equation 3.2 to 0 and then equating components r + 1, . . . , n of both sides
of the resulting equation, gives xr+1 = 0, . . . , xn = 0.
Consequently X1, . . . , Xn−r form a basis for N(A).

Theorem 3.5.1 now follows. For we have

row rankA = dimR(A) = r

column rankA = dimC(A) = r.

Hence
row rankA = column rankA.
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Also

column rankA+ nullityA = r + dimN(A) = r + (n− r) = n.

DEFINITION 3.5.2 The common value of column rankA and row rankA
is called the rank of A and is denoted by rankA.

EXAMPLE 3.5.1 Given that the reduced row–echelon form of

A =





1 1 5 1 4
2 −1 1 2 2
3 0 6 0 −3





equal to

B =





1 0 2 0 −1
0 1 3 0 2
0 0 0 1 3



 ,

find bases for R(A), C(A) and N(A).

Solution. [1, 0, 2, 0, −1], [0, 1, 3, 0, 2] and [0, 0, 0, 1, 3] form a basis for
R(A). Also

A∗1 =





1
2
3



 , A∗2 =





1
−1
0



 , A∗4 =





1
2
0





form a basis for C(A).

Finally N(A) is given by













x1
x2
x3
x4
x5













=













−2x3 + x5
−3x3 − 2x5

x3
−3x5
x5













= x3













−2
−3
1
0
0













+ x5













1
−2
0

−3
1













= x3X1 + x5X2,

where x3 and x5 are arbitrary. Hence X1 and X2 form a basis for N(A).

Here rankA = 3 and nullityA = 2.

EXAMPLE 3.5.2 Let A =

[

1 2
2 4

]

. Then B =

[

1 2
0 0

]

is the reduced

row–echelon form of A.
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Hence [1, 2] is a basis for R(A) and

[

1
2

]

is a basis for C(A). Also N(A)

is given by the equation x1 = −2x2, where x2 is arbitrary. Then
[

x1
x2

]

=

[

−2x2
x2

]

= x2

[

−2
1

]

and hence

[

−2
1

]

is a basis for N(A).

Here rankA = 1 and nullityA = 1.

EXAMPLE 3.5.3 Let A =

[

1 2
3 4

]

. Then B =

[

1 0
0 1

]

is the reduced

row–echelon form of A.
Hence [1, 0], [0, 1] form a basis for R(A) while [1, 3], [2, 4] form a basis

for C(A). Also N(A) = {0}.
Here rankA = 2 and nullityA = 0.

We conclude this introduction to vector spaces with a result of great
theoretical importance.

THEOREM 3.5.2 Every linearly independent family of vectors in a sub-
space S can be extended to a basis of S.

Proof. Suppose S has basis X1, . . . , Xm and that Y1, . . . , Yr is a linearly
independent family of vectors in S. Then

S = 〈X1, . . . , Xm〉 = 〈Y1, . . . , Yr, X1, . . . , Xm〉,

as each of Y1, . . . , Yr is a linear combination of X1, . . . , Xm.
Then applying the left–to–right algorithm to the second spanning family

for S will yield a basis for S which includes Y1, . . . , Yr.

3.6 PROBLEMS

1. Which of the following subsets of R2 are subspaces?

(a) [x, y] satisfying x = 2y;

(b) [x, y] satisfying x = 2y and 2x = y;

(c) [x, y] satisfying x = 2y + 1;

(d) [x, y] satisfying xy = 0;
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(e) [x, y] satisfying x ≥ 0 and y ≥ 0.

[Answer: (a) and (b).]

2. If X, Y, Z are vectors in Rn, prove that

〈X, Y, Z〉 = 〈X + Y, X + Z, Y + Z〉.

3. Determine if X1 =









1
0
1
2









, X2 =









0
1
1
2









and X3 =









1
1
1
3









are linearly

independent in R4.

4. For which real numbers λ are the following vectors linearly independent
in R3?

X1 =





λ
−1
−1



 , X2 =





−1
λ
−1



 , X3 =





−1
−1
λ



 .

5. Find bases for the row, column and null spaces of the following matrix
over Q:

A =









1 1 2 0 1
2 2 5 0 3
0 0 0 1 3
8 11 19 0 11









.

6. Find bases for the row, column and null spaces of the following matrix
over Z2:

A =









1 0 1 0 1
0 1 0 1 1
1 1 1 1 0
0 0 1 1 0









.

7. Find bases for the row, column and null spaces of the following matrix
over Z5:

A =









1 1 2 0 1 3
2 1 4 0 3 2
0 0 0 1 3 0
3 0 2 4 3 2









.
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8. Find bases for the row, column and null spaces of the matrix A defined
in section 1.6, Problem 17. (Note: In this question, F is a field of four
elements.)

9. If X1, . . . , Xm form a basis for a subspace S, prove that

X1, X1 +X2, . . . , X1 + · · ·+Xm

also form a basis for S.

10. LetA =

[

a b c
1 1 1

]

. Find conditions on a, b, c such that (a) rankA =

1; (b) rankA = 2.

[Answer: (a) a = b = c; (b) at least two of a, b, c are distinct.]

11. Let S be a subspace of F n with dimS = m. If X1, . . . , Xm are vectors
in S with the property that S = 〈X1, . . . , Xm〉, prove that X1 . . . , Xm

form a basis for S.

12. Find a basis for the subspace S of R3 defined by the equation

x+ 2y + 3z = 0.

Verify that Y1 = [−1, −1, 1]t ∈ S and find a basis for S which includes
Y1.

13. Let X1, . . . , Xm be vectors in F
n. If Xi = Xj , where i < j, prove that

X1, . . .Xm are linearly dependent.

14. Let X1, . . . , Xm+1 be vectors in F
n. Prove that

dim 〈X1, . . . , Xm+1〉 = dim 〈X1, . . . , Xm〉

if Xm+1 is a linear combination of X1, . . . , Xm, but

dim 〈X1, . . . , Xm+1〉 = dim 〈X1, . . . , Xm〉+ 1

if Xm+1 is not a linear combination of X1, . . . , Xm.

Deduce that the system of linear equations AX = B is consistent, if
and only if

rank [A|B] = rankA.
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15. Let a1, . . . , an be elements of F , not all zero. Prove that the set of
vectors [x1, . . . , xn]

t where x1, . . . , xn satisfy

a1x1 + · · ·+ anxn = 0

is a subspace of F n with dimension equal to n− 1.

16. Prove Lemma 3.2.1, Theorem 3.2.1, Corollary 3.2.1 and Theorem 3.3.2.

17. Let R and S be subspaces of F n, with R ⊆ S. Prove that

dimR ≤ dimS

and that equality implies R = S. (This is a very useful way of proving
equality of subspaces.)

18. Let R and S be subspaces of F n. If R ∪ S is a subspace of F n, prove
that R ⊆ S or S ⊆ R.

19. Let X1, . . . , Xr be a basis for a subspace S. Prove that all bases for S
are given by the family Y1, . . . , Yr, where

Yi =

r
∑

j=1

aijXj ,

and where A = [aij ] ∈Mr×r(F ) is a non–singular matrix.
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Similarly

(z − e 4πi
5 )(z − e−4πi

5 ) = z2 − 2z cos 4π5 + 1.

This gives the desired factorization.

EXAMPLE 5.7.2 Solve z3 = i.

Solution. |i| = 1 and Arg i = π
2 = α. So by equation 5.4, the solutions are

zk = |i|1/3e
i(α+2kπ)

3 , k = 0, 1, 2.

First, k = 0 gives

z0 = e
iπ
6 = cos

π

6
+ i sin

π

6
=

√
3

2
+
i

2
.

Next, k = 1 gives

z1 = e
5πi
6 = cos

5π

6
+ i sin

5π

6
=
−
√
3

2
+
i

2
.

Finally, k = 2 gives

z1 = e
9πi
6 = cos

9π

6
+ i sin

9π

6
= −i.

We finish this chapter with two more examples of De Moivre’s theorem.

EXAMPLE 5.7.3 If

C = 1 + cos θ + · · ·+ cos (n− 1)θ,
S = sin θ + · · ·+ sin (n− 1)θ,

prove that

C =
sin nθ

2

sin θ
2

cos (n−1)θ2 and S =
sin nθ

2

sin θ
2

sin (n−1)θ2 ,

if θ 6= 2kπ, k ∈Z.
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Solution.

C + iS = 1 + (cos θ + i sin θ) + · · ·+ (cos (n− 1)θ + i sin (n− 1)θ)
= 1 + eiθ + · · ·+ ei(n−1)θ
= 1 + z + · · ·+ zn−1, where z = eiθ

=
1− zn
1− z , if z 6= 1, i.e. θ 6= 2kπ,

=
1− einθ
1− eiθ =

e
inθ
2 (e

−inθ
2 − e inθ2 )

e
iθ
2 (e

−iθ
2 − e iθ2 )

= ei(n−1)
θ
2
sin nθ

2

sin θ
2

= (cos (n− 1) θ2 + i sin (n− 1) θ2)
sin nθ

2

sin θ
2

.

The result follows by equating real and imaginary parts.

EXAMPLE 5.7.4 Express cos nθ and sin nθ in terms of cos θ and sin θ,
using the equation cos nθ + sin nθ = (cos θ + i sin θ)n.

Solution. The binomial theorem gives

(cos θ + i sin θ)n = cosn θ +
(

n
1

)

cosn−1 θ(i sin θ) +
(

n
2

)

cosn−2 θ(i sin θ)2 + · · ·
+ (i sin θ)n.

Equating real and imaginary parts gives

cos nθ = cosn θ −
(

n
2

)

cosn−2 θ sin2 θ + · · ·
sin nθ =

(

n
1

)

cosn−1 θ sin θ −
(

n
3

)

cosn−3 θ sin3 θ + · · · .

5.8 PROBLEMS

1. Express the following complex numbers in the form x+ iy, x, y real:

(i) (−3 + i)(14− 2i); (ii) 2 + 3i
1− 4i ; (iii)

(1 + 2i)2

1− i .

[Answers: (i) −40 + 20i; (ii) − 1017 + 11
17 i; (iii) −72 + i

2 .]

2. Solve the following equations:
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(i) iz + (2− 10i)z = 3z + 2i,

(ii) (1 + i)z + (2− i)w = −3i
(1 + 2i)z + (3 + i)w = 2 + 2i.

[Answers:(i) z = − 9
41 − i

41 ; (ii) z = −1 + 5i, w = 19
5 − 8i

5 .]

3. Express 1 + (1 + i) + (1 + i)2 + . . .+ (1 + i)99 in the form x+ iy, x, y
real. [Answer: (1 + 250)i.]

4. Solve the equations: (i) z2 = −8− 6i; (ii) z2 − (3 + i)z + 4+ 3i = 0.
[Answers: (i) z = ±(1− 3i); (ii) z = 2− i, 1 + 2i.]

5. Find the modulus and principal argument of each of the following
complex numbers:

(i) 4 + i; (ii) −32 − i
2 ; (iii) −1 + 2i; (iv) 12(−1 + i

√
3).

[Answers: (i)
√
17, tan−1 14 ; (ii)

√
10
2 , −π + tan−1 13 ; (iii)

√
5, π −

tan−1 2.]

6. Express the following complex numbers in modulus-argument form:

(i) z = (1 + i)(1 + i
√
3)(
√
3− i).

(ii) z =
(1 + i)5(1− i

√
3)5

(
√
3 + i)4

.

[Answers:

(i) z = 4
√
2(cos 5π12 + i sin

5π
12 ); (ii) z = 27/2(cos 11π12 + i sin

11π
12 ).]

7. (i) If z = 2(cos π
4 +i sin

π
4 ) and w = 3(cos

π
6 +i sin

π
6 ), find the polar

form of

(a) zw; (b) z
w ; (c)

w
z ; (d)

z5

w2 .

(ii) Express the following complex numbers in the form x+ iy:

(a) (1 + i)12; (b)
(

1−i√
2

)−6
.

[Answers: (i): (a) 6(cos 5π12 + i sin
5π
12 ); (b) 23(cos

π
12 + i sin

π
12);

(c) 32(cos − π
12 + i sin − π

12); (d) 329 (cos
11π
12 + i sin

11π
12 );

(ii): (a) −64; (b) −i.]
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8. Solve the equations:

(i) z2 = 1 + i
√
3; (ii) z4 = i; (iii) z3 = −8i; (iv) z4 = 2− 2i.

[Answers: (i) z = ± (
√
3+i)√
2
; (ii) ik(cos π

8 + i sin π
8 ), k = 0, 1, 2, 3; (iii)

z = 2i, −
√
3− i,

√
3− i; (iv) z = ik2

3
8 (cos π

16 − i sin π
16), k = 0, 1, 2, 3.]

9. Find the reduced row–echelon form of the complex matrix





2 + i −1 + 2i 2
1 + i −1 + i 1
1 + 2i −2 + i 1 + i



 .

[Answer:





1 i 0
0 0 1
0 0 0



.]

10. (i) Prove that the line equation lx+my = n is equivalent to

pz + pz = 2n,

where p = l + im.

(ii) Use (ii) to deduce that reflection in the straight line

pz + pz = n

is described by the equation

pw + pz = n.

[Hint: The complex number l + im is perpendicular to the given
line.]

(iii) Prove that the line |z−a| = |z−b| may be written as pz+pz = n,
where p = b− a and n = |b|2 − |a|2. Deduce that if z lies on the
Apollonius circle |z−a||z−b| = λ, then w, the reflection of z in the line

|z − a| = |z − b|, lies on the Apollonius circle |z−a||z−b| =
1
λ .

11. Let a and b be distinct complex numbers and 0 < α < π.

(i) Prove that each of the following sets in the complex plane rep-
resents a circular arc and sketch the circular arcs on the same
diagram:
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Arg
z − a
z − b = α, −α, π − α, α− π.

Also show that Arg
z − a
z − b = π represents the line segment joining

a and b, while Arg
z − a
z − b = 0 represents the remaining portion of

the line through a and b.

(ii) Use (i) to prove that four distinct points z1, z2, z3, z4 are con-
cyclic or collinear, if and only if the cross–ratio

z4 − z1
z4 − z2

/
z3 − z1
z3 − z2

is real.

(iii) Use (ii) to derive Ptolemy’s Theorem: Four distinct pointsA, B, C, D
are concyclic or collinear, if and only if one of the following holds:

AB · CD +BC ·AD = AC ·BD
BD ·AC +AD ·BC = AB · CD
BD ·AC +AB · CD = AD ·BC.



Chapter 6

EIGENVALUES AND

EIGENVECTORS

6.1 Motivation

We motivate the chapter on eigenvalues by discussing the equation

ax2 + 2hxy + by2 = c,

where not all of a, h, b are zero. The expression ax2 + 2hxy + by2 is called
a quadratic form in x and y and we have the identity

ax2 + 2hxy + by2 =
[

x y
]

[

a h
h b

] [

x
y

]

= XtAX,

where X =

[

x
y

]

and A =

[

a h
h b

]

. A is called the matrix of the quadratic

form.

We now rotate the x, y axes anticlockwise through θ radians to new
x1, y1 axes. The equations describing the rotation of axes are derived as
follows:

Let P have coordinates (x, y) relative to the x, y axes and coordinates
(x1, y1) relative to the x1, y1 axes. Then referring to Figure 6.1:

115
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Figure 6.1: Rotating the axes.

x = OQ = OP cos (θ + α)

= OP (cos θ cosα− sin θ sinα)
= (OP cosα) cos θ − (OP sinα) sin θ
= OR cos θ − PR sin θ
= x1 cos θ − y1 sin θ.

Similarly y = x1 sin θ + y1 cos θ.
We can combine these transformation equations into the single matrix

equation:
[

x
y

]

=

[

cos θ − sin θ
sin θ cos θ

] [

x1
y1

]

,

or X = PY , where X =

[

x
y

]

, Y =

[

x1
y1

]

and P =

[

cos θ − sin θ
sin θ cos θ

]

.

We note that the columns of P give the directions of the positive x1 and y1
axes. Also P is an orthogonal matrix – we have PP t = I2 and so P

−1 = P t.
The matrix P has the special property that detP = 1.

A matrix of the type P =

[

cos θ − sin θ
sin θ cos θ

]

is called a rotation matrix.

We shall show soon that any 2× 2 real orthogonal matrix with determinant
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equal to 1 is a rotation matrix.
We can also solve for the new coordinates in terms of the old ones:

[

x1
y1

]

= Y = P tX =

[

cos θ sin θ
− sin θ cos θ

] [

x
y

]

,

so x1 = x cos θ + y sin θ and y1 = −x sin θ + y cos θ. Then
XtAX = (PY )tA(PY ) = Y t(P tAP )Y.

Now suppose, as we later show, that it is possible to choose an angle θ so
that P tAP is a diagonal matrix, say diag(λ1, λ2). Then

XtAX =
[

x1 y1
]

[

λ1 0
0 λ2

] [

x1
y1

]

= λ1x
2
1 + λ2y

2
1 (6.1)

and relative to the new axes, the equation ax2 + 2hxy + by2 = c becomes
λ1x

2
1 + λ2y

2
1 = c, which is quite easy to sketch. This curve is symmetrical

about the x1 and y1 axes, with P1 and P2, the respective columns of P ,
giving the directions of the axes of symmetry.
Also it can be verified that P1 and P2 satisfy the equations

AP1 = λ1P1 and AP2 = λ2P2.

These equations force a restriction on λ1 and λ2. For if P1 =

[

u1
v1

]

, the

first equation becomes
[

a h
h b

] [

u1
v1

]

= λ1

[

u1
v1

]

or

[

a− λ1 h
h b− λ1

] [

u1
v1

]

=

[

0
0

]

.

Hence we are dealing with a homogeneous system of two linear equations in
two unknowns, having a non–trivial solution (u1, v1). Hence

∣

∣

∣

∣

a− λ1 h
h b− λ1

∣

∣

∣

∣

= 0.

Similarly, λ2 satisfies the same equation. In expanded form, λ1 and λ2
satisfy

λ2 − (a+ b)λ+ ab− h2 = 0.
This equation has real roots

λ =
a+ b±

√

(a+ b)2 − 4(ab− h2)
2

=
a+ b±

√

(a− b)2 + 4h2
2

(6.2)

(The roots are distinct if a 6= b or h 6= 0. The case a = b and h = 0 needs
no investigation, as it gives an equation of a circle.)
The equation λ2− (a+b)λ+ab−h2 = 0 is called the eigenvalue equation

of the matrix A.



118 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

6.2 Definitions and examples

DEFINITION 6.2.1 (Eigenvalue, eigenvector)
Let A be a complex square matrix. Then if λ is a complex number and
X a non–zero complex column vector satisfying AX = λX, we call X an
eigenvector of A, while λ is called an eigenvalue of A. We also say that X
is an eigenvector corresponding to the eigenvalue λ.

So in the above example P1 and P2 are eigenvectors corresponding to λ1
and λ2, respectively. We shall give an algorithm which starts from the

eigenvalues of A =

[

a h
h b

]

and constructs a rotation matrix P such that

P tAP is diagonal.
As noted above, if λ is an eigenvalue of an n × n matrix A, with

corresponding eigenvector X, then (A − λIn)X = 0, with X 6= 0, so
det (A− λIn) = 0 and there are at most n distinct eigenvalues of A.
Conversely if det (A− λIn) = 0, then (A− λIn)X = 0 has a non–trivial

solutionX and so λ is an eigenvalue ofA withX a corresponding eigenvector.

DEFINITION 6.2.2 (Characteristic equation, polynomial)
The equation det (A − λIn) = 0 is called the characteristic equation of A,
while the polynomial det (A−λIn) is called the characteristic polynomial of
A. The characteristic polynomial of A is often denoted by chA(λ).
Hence the eigenvalues of A are the roots of the characteristic polynomial

of A.

For a 2× 2 matrix A =
[

a b
c d

]

, it is easily verified that the character-

istic polynomial is λ2− (traceA)λ+detA, where traceA = a+d is the sum
of the diagonal elements of A.

EXAMPLE 6.2.1 Find the eigenvalues of A =

[

2 1
1 2

]

and find all eigen-

vectors.

Solution. The characteristic equation of A is λ2 − 4λ+ 3 = 0, or

(λ− 1)(λ− 3) = 0.

Hence λ = 1 or 3. The eigenvector equation (A− λIn)X = 0 reduces to
[

2− λ 1
1 2− λ

] [

x
y

]

=

[

0
0

]

,
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or

(2− λ)x+ y = 0

x+ (2− λ)y = 0.

Taking λ = 1 gives

x+ y = 0

x+ y = 0,

which has solution x = −y, y arbitrary. Consequently the eigenvectors
corresponding to λ = 1 are the vectors

[

−y
y

]

, with y 6= 0.
Taking λ = 3 gives

−x+ y = 0

x− y = 0,

which has solution x = y, y arbitrary. Consequently the eigenvectors corre-

sponding to λ = 3 are the vectors

[

y
y

]

, with y 6= 0.

Our next result has wide applicability:

THEOREM 6.2.1 Let A be a 2× 2 matrix having distinct eigenvalues λ1
and λ2 and corresponding eigenvectors X1 and X2. Let P be the matrix
whose columns are X1 and X2, respectively. Then P is non–singular and

P−1AP =

[

λ1 0
0 λ2

]

.

Proof. Suppose AX1 = λ1X1 and AX2 = λ2X2. We show that the system
of homogeneous equations

xX1 + yX2 = 0

has only the trivial solution. Then by theorem 2.5.10 the matrix P =
[X1|X2] is non–singular. So assume

xX1 + yX2 = 0. (6.3)

Then A(xX1 + yX2) = A0 = 0, so x(AX1) + y(AX2) = 0. Hence

xλ1X1 + yλ2X2 = 0. (6.4)
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Multiplying equation 6.3 by λ1 and subtracting from equation 6.4 gives

(λ2 − λ1)yX2 = 0.
Hence y = 0, as (λ2−λ1) 6= 0 and X2 6= 0. Then from equation 6.3, xX1 = 0
and hence x = 0.
Then the equations AX1 = λ1X1 and AX2 = λ2X2 give

AP = A[X1|X2] = [AX1|AX2] = [λ1X1|λ2X2]

= [X1|X2]
[

λ1 0
0 λ2

]

= P

[

λ1 0
0 λ2

]

,

so

P−1AP =

[

λ1 0
0 λ2

]

.

EXAMPLE 6.2.2 Let A =

[

2 1
1 2

]

be the matrix of example 6.2.1. Then

X1 =

[

−1
1

]

and X2 =

[

1
1

]

are eigenvectors corresponding to eigenvalues

1 and 3, respectively. Hence if P =

[

−1 1
1 1

]

, we have

P−1AP =

[

1 0
0 3

]

.

There are two immediate applications of theorem 6.2.1. The first is to the
calculation of An: If P−1AP =diag (λ1, λ2), then A = Pdiag (λ1, λ2)P

−1

and

An =

(

P

[

λ1 0
0 λ2

]

P−1
)n

= P

[

λ1 0
0 λ2

]n

P−1 = P

[

λn1 0
0 λn2

]

P−1.

The second application is to solving a system of linear differential equations

dx

dt
= ax+ by

dy

dt
= cx+ dy,

where A =

[

a b
c d

]

is a matrix of real or complex numbers and x and y

are functions of t. The system can be written in matrix form as Ẋ = AX,
where

X =

[

x
y

]

and Ẋ =

[

ẋ
ẏ

]

=

[ dx
dt
dy
dt

]

.
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We make the substitution X = PY , where Y =

[

x1
y1

]

. Then x1 and y1

are also functions of t and

Ẋ = P Ẏ = AX = A(PY ), so Ẏ = (P−1AP )Y =

[

λ1 0
0 λ2

]

Y.

Hence ẋ1 = λ1x1 and ẏ1 = λ2y1.
These differential equations are well–known to have the solutions x1 =

x1(0)e
λ1t and x2 = x2(0)e

λ2t, where x1(0) is the value of x1 when t = 0.

[If dxdt = kx, where k is a constant, then

d

dt

(

e−ktx
)

= −ke−ktx+ e−kt dx
dt
= −ke−ktx+ e−ktkx = 0.

Hence e−ktx is constant, so e−ktx = e−k0x(0) = x(0). Hence x = x(0)ekt.]

However

[

x1(0)
y1(0)

]

= P−1
[

x(0)
y(0)

]

, so this determines x1(0) and y1(0) in

terms of x(0) and y(0). Hence ultimately x and y are determined as explicit
functions of t, using the equation X = PY .

EXAMPLE 6.2.3 Let A =

[

2 −3
4 −5

]

. Use the eigenvalue method to

derive an explicit formula for An and also solve the system of differential
equations

dx

dt
= 2x− 3y

dy

dt
= 4x− 5y,

given x = 7 and y = 13 when t = 0.

Solution. The characteristic polynomial ofA is λ2+3λ+2 which has distinct

roots λ1 = −1 and λ2 = −2. We find corresponding eigenvectorsX1 =
[

1
1

]

and X2 =

[

3
4

]

. Hence if P =

[

1 3
1 4

]

, we have P−1AP = diag (−1, −2).
Hence

An =
(

Pdiag (−1, −2)P−1
)n
= Pdiag ((−1)n, (−2)n)P−1

=

[

1 3
1 4

] [

(−1)n 0
0 (−2)n

] [

4 −3
−1 1

]
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= (−1)n
[

1 3
1 4

] [

1 0
0 2n

] [

4 −3
−1 1

]

= (−1)n
[

1 3× 2n
1 4× 2n

] [

4 −3
−1 1

]

= (−1)n
[

4− 3× 2n −3 + 3× 2n
4− 4× 2n −3 + 4× 2n

]

.

To solve the differential equation system, make the substitution X =
PY . Then x = x1 + 3y1, y = x1 + 4y1. The system then becomes

ẋ1 = −x1
ẏ1 = −2y1,

so x1 = x1(0)e
−t, y1 = y1(0)e

−2t. Now

[

x1(0)
y1(0)

]

= P−1
[

x(0)
y(0)

]

=

[

4 −3
−1 1

] [

7
13

]

=

[

−11
6

]

,

so x1 = −11e−t and y1 = 6e−2t. Hence x = −11e−t + 3(6e−2t) = −11e−t +
18e−2t, y = −11e−t + 4(6e−2t) = −11e−t + 24e−2t.
For a more complicated example we solve a system of inhomogeneous

recurrence relations.

EXAMPLE 6.2.4 Solve the system of recurrence relations

xn+1 = 2xn − yn − 1
yn+1 = −xn + 2yn + 2,

given that x0 = 0 and y0 = −1.

Solution. The system can be written in matrix form as

Xn+1 = AXn +B,

where

A =

[

2 −1
−1 2

]

and B =

[

−1
2

]

.

It is then an easy induction to prove that

Xn = AnX0 + (A
n−1 + · · ·+A+ I2)B. (6.5)
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Also it is easy to verify by the eigenvalue method that

An =
1

2

[

1 + 3n 1− 3n
1− 3n 1 + 3n

]

=
1

2
U +

3n

2
V,

where U =

[

1 1
1 1

]

and V =

[

1 −1
−1 1

]

. Hence

An−1 + · · ·+A+ I2 =
n

2
U +

(3n−1 + · · ·+ 3 + 1)
2

V

=
n

2
U +

(3n−1 − 1)
4

V.

Then equation 6.5 gives

Xn =

(

1

2
U +

3n

2
V

)[

0
−1

]

+

(

n

2
U +

(3n−1 − 1)
4

V

)[

−1
2

]

,

which simplifies to
[

xn
yn

]

=

[

(2n+ 1− 3n)/4
(2n− 5 + 3n)/4

]

.

Hence xn = (2n− 1 + 3n)/4 and yn = (2n− 5 + 3n)/4.
REMARK 6.2.1 If (A − I2)

−1 existed (that is, if det (A − I2) 6= 0, or
equivalently, if 1 is not an eigenvalue of A), then we could have used the
formula

An−1 + · · ·+A+ I2 = (An − I2)(A− I2)−1. (6.6)

However the eigenvalues ofA are 1 and 3 in the above problem, so formula 6.6
cannot be used there.

Our discussion of eigenvalues and eigenvectors has been limited to 2 × 2
matrices. The discussion is a more complicated for matrices of size greater
than two and is best left to a second course in linear algebra. Nevertheless
the following result is a useful generalization of theorem 6.2.1. The reader
is referred to [28, page 350] for a proof.

THEOREM 6.2.2 Let A be an n × n matrix having distinct eigenvalues
λ1, . . . , λn and corresponding eigenvectors X1, . . . , Xn. Let P be the matrix
whose columns are respectively X1, . . . , Xn. Then P is non–singular and

P−1AP =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 0 · · · λn
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