Chapter 7

Partial fractions

An algebraic fraction is a fraction in which the numerator and denominator

are both polynomial expressions. A polynomial expression is one where

every term is a multiple of a power of x, such as

5x*+6x3+7x +4
The degree of a polynomial is the power of the highest term in x. So in this
case the degree is 4.
The number in front of x in each term is called its coefficient. So, the
coefficient of x* is 5. The coefficient of x3 is 6.

Now consider the following algebraic fractions:

T 3+ 3
2+ 92 4+ 241

In both cases the numerator is a polynomial of lower degree than the
denominator. We call these proper fractions
With other fractions the polynomial may be of higher degree in the numerator

or it may be of the same degree, for example

ottt r+4
3+ x+ 2 T+ 3
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¢ If the degree of the numerator is less than the degree of the denominator
the fraction is said to be a proper fraction
o |f the degree of the numerator is greater than or equal to the degree of the

denominator the fraction is said to be an improper fraction

1. Revision of adding and subtracting fractions

We now revise the process for adding and subtracting fractions. Consider

2 1
r—3 2r+1

In order to add these two fractions together, we need to find the lowest common

denominator. In this particular case, it is (x —3)(2x + 1).

We write each fraction with this denominator.

2 2(2x + 1) 1 r—3
=3 o3+ M Ly T GonEas))
So
2 1 22z + 1) T3
r—3 2041  (z-3)(22+1) (z-3)(2z+1)

The denominators are now the same so we can simply subtract the numerators

and divide the result by the lowest common denominator to give

2 1 4;1:—|—2—:c—|—3_ 3r+5

r—3 2r+1 (r—3)2x+1) (r—3)2x+1)

Sometimes in mathematics we need to do this operation in reverse. In calculus,
for instance, or when dealing with the binomial theorem, we sometimes need to

split a fraction up into its component parts which are called partial fractions.

We discuss how to do this in the following section.
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2. Expressing a fraction as the sum of its partial

fractions

In the previous section we saw that

2 1 B 3r+5
r—3 2uw+1  (z-3)2z+1)
. 3r+5 . .
Suppose we start with ——————— How can we get this back to its component parts 7
(x —3)(2z +1)

By inspection of the denominator we see that the component parts must have

denominators of x — 3 and 2x + 1 so we can write

345 A B
(r —3)(2z + 1) r—3 2r+1

where A and B are numbers. A and B cannot involve x or powers of x because

otherwise the terms on the right would be improper fractions.

The next thing to do is to multiply both sides by the common denominator
(x—3)(2x+1). This gives

Br+5)(z—3)20+1) Aw—3)2r+1) Bx—3)(2c+1)
Z—-3)2r+1) r—3 0 2+l

Then cancelling the common factors from the numerators and denominators of
each term gives

3Ix+5=A2x+1)+B(x—3)
Now this is an identity. This means that it is true for any values of x, and because
of this we can substitute any values of x we choose into it. Observe that if we let
x = —1/2 the first term on the right will become zero and hence A will disappear.
If we let x = 3 the second term on the right will become zero and hence B will

disappear.
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1
3 1
—— = B|l—=—-3
5 + 0 ( 5 )
3 = 3P
from which
B=-1
Now we want to try to find A.
If r =3
14=7A
so that A = 2.
Putting these results together we have
3r+5 B A N B
(x—3)2x+1) -3 2z+1
B 2 B 1
 z—3 2z+1

which is the sum that we started with, and we have now broken the fraction

back into its component parts called partial fractions.

Example

as the sum of its partial fractions.

xr
Suppose we want to express -
(x —1)(x + 2)

Observe that the factors in the denominator are x — 1 and = + 2 so we write

r A B

(zr—1)zx+2) -1 zxz+2

where A and B are numbers.
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We multiply both sides by the common denominator (x — 1)(x + 2):
Ix=Ax+2)+Bx—-1)

This time the special values that we shall choose are x = —2 because then the

first term on the right will become zero and A will disappear, and x = 1 because

then the second term on the right will become zero and B will disappear.

If = -2
—6 = —3B
—6
B = 2
fzr=1
3 = 3A

Putting these results together we have
Bx 1 2

(r—1)(z+2) -1 =z+2

and we have expressed the given fraction in partial fractions.

Example: Express the following as a sum of partial fractions

1
x3 —9x

s A Ada yusll o) el

1 A B C

x3—9x: X X—-3 x+3
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S 1=A(x-3)(x+3)+Bx(x+3)+ Cx(x-3)

A:—% Ol @il X = 0 g
1 . .
Bzﬁ O EhXx =3 pay

C:%oiéﬁgxz-ﬁ}@bﬁ

1 1 1 1
e =——+ + :
X* —9x 9x 18(x—3) 18(x+3)

Sometimes the denominator is more awkward as we shall see in the following

section.

3. Fractions where the denominator has a repeated
factor

Consider the following example in which the denominator has a repeated factor (z — 1)°.

Example

Jr+1 _ . .
Suppose we want to express CESEr)] as the sum of its partial fractions.
(z—1)*(z+2)
There are actually three possibilities for a denominator in the partial fractions: = — 1, z + 2 and
also the possibility of (z — 1)%, so in this case we write

Jr+1 - A . B . C
(z-12z+2) (@-1) @-1? (=+2)

where A, B and C are numbers.
As before we multiply both sides by the denominator (x — 1)2(x + 2) to give
3x+1=Axx-1)(x+2)+Bx+2)+Cx—1)?(1)
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Again we look for special values to substitute into this identity. If we let x =1
then the first and last terms on the right will be zero and A and C will disappear.

If we let x = —2 the first and second terms will be zero and A and B will

disappear.
fx=1 ]
4=38 so that B = 3
If + = -2
-5 =0C so that e —g

We now need to find A. There is no special value of x that will eliminate B and
C to give us A. We could use any value. We could use x = 0. This will give us an
equation in A, B and C.

Since we already know B and C, this would give us A.

But here we shall demonstrate a different technique - one called equating
coefficients. We take equation 1 and multiply-out the right-hand side, and then

collect up like terms.

3r4+1 = Alz—1)(z+2)+ Bz +2)+C(z—1)?
= Al +r2-2)+B(z+2)+C(z* -2z +1)
= (A+C)* +(A+B-20)z+ (-2A+ 2B+ ()

This is an identity which 15 true for all values of . On the left-hand side there are no terms
involving =2 whereas on the right we have (A + C)z2. The only way this can be true is if

A+C=0

This is called equating coefficients of =2. We already know that ' = —ﬁ s0 this means that

A = 5. We also already know that B = —1 Putting these results together we have

3z +1 5 4 5

z-12z+2) 9z-1 3z_12 9z12

and the problem is solved.
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Example: Express the following as a sum of partial fractions

2X2 + X+ 2
(L+x)1-x)?

Jad)

2X% + X+ 2 A B C

A+x)1-X)* 1+X TIx " (1-x)?

S2X 4+ X+2=Al1-X)* +BA-X)A+X)+C@1+X)

of gl cudlall b x = -1 pag

2=4A= A=

of gl Gl b x =1 gias

5=2C=C=

o i sl b XE Jalaa Blsbsay

2= A_B=B=A_2-+_ -3
2 2

2X2 + X+ 2 1 3 5

CArA—x)?  20+x) 20-x)  20-x)7 "
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4.Fractions in which the denominator has a
quadratic term

Sometimes we come across fractions in which the denominator has a quadratic term

which cannot be factorised. We will now learn how to deal with cases like this.

Example: Suppose we want to express

L%
(2 +z+1)(x—2)

as the sum of its partial fractions.

Note that the two denominators of the partial fractions will be (x>+x+1) and
(x—2). When the denominator contains a quadratic factor we have to consider
the possibility that the numerator can contain a term in X. This is because if it
did, the numerator would still be of lower degree than the denominator - this
would still be a proper fraction. So we write

S  Ax+ B C
(2 +z+1)(zx—-2) =22+z+1 -2

As before we multiply both sides by the denominator (x? + x + 1)(x — 2) to give
5x=(Ax+B)(x—2)+ C(x®>+x+ 1)

One special value we could use is x = 2 because this will make the first term on

the right-hand side zero and so A and B will disappear.
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If =2
10

—_

i
Unfortunately there is no value we can substitute which will enable us to get nid of ' so instead
we use the technigue of equating coefficients. We have

10 = 77 and so o

B (A + B)(x — 2) + C(£* + = + 1)
Ar? —2Ax + Br - 2B+ C2+ Cz + C
(A+C)? 4+ (-2A+ B+ C)x + (-2B+C)

We still need to find A and B. There is no term involving == on the left and so we can state
that

A+C =0

Since ' IT{] we have A —l—fl.

The left-hand side has no constant term and so

—2B4+C =10 so that B %
: 10 5 _
But since ' = — then B = =. Putting all these results together we have
i i
5z g ®
(r2 4+ =+ 1)z —2) 22+r+1 -2
—10z + 5 10
T2 +z+1)  T(x—12)
5(—2z + 1) 10
T2 +z+1)  T(x—12)

Example: Express the following as a sum of partial fractions

x—-1
(X+1D(X* +2x+2)

Jadl

DA (Al (S Yo Al Ao jal) e aldal) Jalse aaf o galy

x-1 A N Bx+C
(X+D(X* +2x+2) x+1 Xx*+2x+2
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SoX=1= AX® +2Xx+2) + (Bx+C)(x +1)
A=-2 o g dal) b x=-1 pags

O s cushall (B X* alas Blglsas

Il
N

0=A+B=B=-A

of i (cnbshl) A (slhaall aal) Blsluas 5T) Gl & x=0 g
~1=2A+C=C=-2A-1=4-1=3

_ x—1 =2 2X+3
(X +D(XP+2x+2)  x+1 x?+2x+2

Example: Express the following as a sum of partial fractions

1
X'+ x 41

Jall

X* 4+ X2 +1=X" 42X +1-%x* = (X* +1)* = x® = (X® + X+ (x> —=x+1)

1 _ AXx+B, +A2x+B2
X*+x2+1 x*+x+1 xXP—-x+1

s1=(AX+B)(X* —x+1) + (A x+B,)(x* +x+1)
bl el aleall Ao Jeans guiplall b sllaall aad) oX oX? oXC Jalas d)lka

A+A =0,B-A+A +B,=0, B +B,=1, A-B +A +B,=0

e deans ¥ alaall 038 Ja

1 1 1

=—, =——, B :B = —

A > A, 5 Bi=B =5
1 X+1 - X+1

4 2 = 2 + 2
X"+ x°+1 2(x“+x+1) 2(x°—x+1)
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EXxercises

Express the following as a sum of partial fractions
2z — 1 2r+5 3 1
a)

e12e-3 » w-29@+D © w-ne-1 9 @wrom-9

Express the following as a sum of partial fractions
S5x2 + 17z + 15 T 2?4+ 1

) (x+2)%(x+1) ) (r —3)2(2z+1) ) (r —1)%(z+1)

Express the following as a sum of partial fractions
2 —3r -7 13 T
a) S _ b) — —— c) :
(2 +2+2)(22 — 1) (22 + 3)(xz% + 1) (22 — 2+ 1)(3z — 2)

Express the following as a sum of powers of x and partial fractions

(1)& 2) x* +20 3) 2+ X
(X+2)(x+3) (x—2)*(x+4) 1-x2

(4) x° (5) 8x -1 (6) 3X* +Xx+9
(x+4)(x-1) (x=2)(x* +1) (X+3)(X* +x+5)

7) X—3-2x? 8) X? +3x—-13 () 3 +6x* +17x+1
x*(x-1) (x+2)(x-1) (x+3)(x* +4)

(10) 2x% +11 (1) x*—3x*-3 (12) x® +2x% +61
(x* +4)(x-3) x*(x-1) (x+3)*(x* +4)
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9-28-1998
Differential equations - Introduction

A differential equation is an equation involving a variable and its derivatives with respect to one
or more independent variables. Differential equations often arise in modelling real world phenomena —
derivatives give rates of change, and rates of change are often empirically measurable.

The order of the equation is the order of the highest-order derivative that it contains. If there is a
single independent variable, the equation is an ordinary differential equation (ODE); if there are several
independent variables, it is a partial differential equation (PDE).

d 2 .
d—y — Zy=2z2" first order, ordinary
r z
0?u  0%u .
EIieYe second order, partial
x

To solve the differential equation means (roughly) to find an expression for the dependent variable in
terms of the independent variables which satisfies the original equation.

dy
E le. = =2(1-y?
xample. — (1—y9?)

The solution 1s
ce” — 1

ce® +1

¢ is an arbitrary constant. That is, the expression above is a solution for any value of ¢: ¢ = 1, ¢ = 7,

¢ = —7.9, and so on.
T p—

You can verify that y = cex | solves the equation by plugging it into both sides and checking that
ce
the equation is true:
xr

dy 2ce” 1

W_ e g
de  (ce® +1)%’ 2(

2ce
(ce” + 1)

It is good to remember that you can check the solution to a differential equation by plugging in.
xr

-y =

Note that each value of ¢ gives a different solution y = Intuitively, the original equation

ce® 41
involves a first derivative. You “undo” a first derivative by integrating once. A single integration produces

one arbitrary constant.




The picture shows the solution curves for ¢ = —3,—2,—1,0,1,2,3. The solution curves for different
values of ¢ form a family of curves which fill up the plane. They may remind you of the integral curves of
a vector field. Indeed, the two situations are closely related. 0O

Take a first order equation
dy
dr f(z,y).

dy . . . . .
Y is the slope of a solution curve, so the equation says that f(x,y) is the slope of a solution curve at

T
the point (z,y). For example, suppose
dy x

de y+1

. . . . d 4
The slope of the solution curve passing through the point (4, 1) is d—y = 1
x
It follows that you can get a rough picture of the solution curves by drawing a little segment at each
point (z,y) such that the slope of the segment is f(x,y). You could do this by hand with a piece of graph
paper; you can also use q computer equipped with the appropriate software. The symbolic math package

Mathematica has a function called PlotVectorField which draws a picture of a vector field. Here’s how to

use it.
First, you will need to load the package containing the function:

Needs["Graphics ‘PlotField ‘"]

, dy x
I’ll use Tr = .
dz = y+ 1. The vector field is (y + 1, z). The following command draws a picture of the field:

as an example. Think of the fraction as dy divided by dx, with dy = = and

PlotVectorField[{y + 1, x}, {x, 0, 3}, {y, 0, 3}]
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. . . d . . .
What do you do with something like i Q- y?? It isn’t obviously a fraction. Just choose dz and

dz
dy so the quotient is 22 — 4?. For example, dx = 1 and dy = z? — y? will work:

PlotVectorField[{1, x~2 - y~2}, {x, -2, 2}, {y, -2, 2}]
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The pictures above are called direction fields. Note that you can draw them without actually solving
the equation. Hence, you can sometimes tell things about the solution curves without actually solving the
equation.

Generically, the general solution to an n-th order differential equation has n arbitrary constants. To
put things informally, the general solution i1s an expression which contains all possible solutions as special
cases.

This course is primiarly concerned with ordinary differential equations. Partial differential equa-
tions are often more difficult to solve, and may require techniques such as Fourier series.

Example. Verify that u = % +t? is a solution to

o _ o
Az~ o2’

(This equation is a special case of the wave equation.)

UxeQZUtt. 0

Example. Find the values of r such that y = ¢"" is a solution to
Yy’ — 2y —3y=0.
(The derivatives are taken with respect to z.)

Compute the first and second derivatives:
y=e"", y =re’®, y”:rze”.
Plug them into the differential equation and solve for r:
Y — 2y — 3y =rle’ — e’ — 3" = (r2 —2r—3)e"™ =0.
Then r? —2r —3=10,0r (r—3)(r+1)=0,s0 r =3 or r = —1.
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e3” and e~ are solutions to the equation. 0O

Remarks.

1. The previous example shows that if you can guess the form of a solution to a differential equation, you
can often obtain a solution.

2. An equation of the form
tn (2)y!"™ + an_1(z)y" 7Y + -+ ar(@)y + ao(2)y = f(x)

is a linear equation in y. The dependent variable y and its derivatives only occur to the first power,
with coefficients which are functions of # alone. 0O

@1998 by Bruce Ikenaga 4



12-17-2004
First-order linear equations

An equation of the form
an()y™ + an 1 (2)y" T + -+ ar(@)y + ao(z)y = f(@)

is a linear equation in y. The dependent variable y and its derivatives only occur to the first power, with
coefficients which are functions of = alone.
Here is a first-order linear equation:

a(z)y’ + b(z)y = c(z).
Divide through by a(x):
b(x) c(x)

YT @

Rename the fractions:
y' + P(z)y = Q().

You should write first-order linear equations in this standard form before using the solution method
below.
The idea for solving this equation is to try to turn the left side into an exact form — i.e. something

dj
which is exactly % for some f. To do this, multiply both sides by the integrating factor

I= exp/P(a:) dz = ef P@) 4=,
Here is why it works. By the Product Rule and the Chain Rule,

i _ /fP(m)dm i fP(ac)dac _
I <yexp/P(m)da:>—ye +ydw (e )_

y/efP(ac)dac + yef P(z)dz di (/ P(:L’) dl‘) — y'ef P(z) dx + yefP(ac)dac P(:L’)
XL

The last expression is just ef P(@)dz times the left side of our original differential equation. So multiply
the original equation by e P@do,
y/ef P(z) dx + ypef P(z)dr _ Qef P(z)dr _ 10.

As above, the left side is the derivative of yef Pla)de o,

% (yefP(x)dx) 10,

y@f P(z)dz — /IQ dl’,

yI = /IQdm.

z) dz

In doing a problem, you can simply compute I = ef P , then jump to the last equation. To finish,

compute the integral on the right side.



d
Example. Y cosy
dx

e
CUy_ 2

First, compute the integrating factor:

3
I= exp/—d:v =exp3lnz =explnz® =23
x

(This cancellation of exp and ln often occurs in these computations. Note that you have to push the

constant into the exponent first.)
Now plug the integrating factor into the equation yI = [ IQ dz:

coSx
ya:3:/a:3 5 da::/:rcosa:d:r.
x

Compute the integral on the right using integration by parts:

d
— d
dx f v
+ =z Ccos T
Ny
- 1 sin x
N\

+ 0 — —cosz
/a:cos:rd:r::rsina:+cosa:+0

Hence,
sinz cosx C 0

yr® =xsinz +cosz +C, y= 5 —t+ =
T x x

"0y = (sinz)®, y(0) = 1.

Example. 3’ —
cos T
The “y(0) = 1”7 is called an initial condition. This means you are to find the solution which satisfies
=0,y =1—ie. the solution which passes through the point (0,1). To do this, plug z = 0 and y = 1
into the general solution and solve for the arbitrary constant.

The integrating factor is

I =exp (—/ Sy da:) =explncosx = cosx.
cos T

Therefore,
1
ycoss = /(sin z)® cosz dr = g(sin )5 +C,

l(sina:)6 . c

6 cosz = cosw
Now plug in the initial condition:

1
1:6-0+C’, so C=1.



The solution is
_ 1 (sinxz)® N 1

O

6 cosx cosz

Example. ydz + (3z —zy + 2)dy = 0.

This equation is not linear in y:

However, it is linear in z:

The integrating factor is

Therefore,
zyle™V = —2/y26_y dy = —2 (—y2e_y —2ye™Y — Qe_y) +C =2y +4ye ¥ +4e YV + C.

The solution is

T=-—+— + —e¥
y vy P
Here’s the work for the integral:
d [d
dy v
+ v ey
hY
T —eV
h
+ 2 e Y
Noe?
- 0 = —e¥

/y2e*y dy = —y?e ¥V —2ye ¥ —2e Y+ C. 0

Example. y' = 2y + e® cos 3z, y(0) = 4.

Rewrite the equation as y' — 2y = €27 cos 3x.
The integrating factor is

I :exp/—2da: =e 27,

(A standard mistake here is to use 2 instead of —2. But the form I used in setting things up was
y' + P(z)y = Q(x), with a “+” on the left. So if the y term is subtracted, the “—” is used in computing I.)
Therefore,

1
ye 2 = /672I62z cos3xdr = /cos 3xdr = 3 sin3z + C.
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The general solution is
1
Yy = 562”” sin 3z + Ce?”.

Plug in the initial condition:
4=y0)=0+C, C=4.

The solution is

1
y = 562”” sin3z + 4e**. O

3
Example. (Discontinuous forcing) y' + —y = g(z), where
T
= ]. — = —
9(z) — ifx>1 , and y<2> 8’
x
The idea is to solve the equation separately on 0 < z < 1 and on x > 1, then match the pieces up at

x =1 to get a continuous solution.

3
0 <z <1y + —y =1 The integrating factor is
T

3
I:exp/—da::e3h”” = z°.
x

Then )
yz3 :/x3da:: Zx4+C.

The solution is

1 c
y=3® + pel
Plug in the initial condition:
1 1 1
-—=yl|l-)=<+8C, C=0.
g Y (2) g +o¢
The solution on the interval 0 < z <1 is
_1
y =2

1
Note that y(1) = T

3 1
x> 1: y' + —y = —. The integrating factor is the same as before, so
x x

1
yx? :/:er:r: §m3+C.
The solution is
1 " c
Y3
. . . . 1
In order to get this piece to “match” with the previous piece, set y(1) = vk

1 1
=y(l) ==+ = ——.
y(1) 3 c, C D



The solution on the interval z > 1 is

1 11
VT3 1248
The complete solution is
im ifo<z<1
¥y=3y1 11 |
3 258 ifx>1

You can see the two pieces glued together in the picture below:

Example. Calvin Butterball’s backpack has a capacity of 5 gallons. Calvin’s creative lab partners pour 1
gallon of pure water into the backpack. After that, water containing 0.5 pounds of dissolved salt per gallon
is pumped in at 2 gallons per minute; the well-stirred mixture drains out the bottom at 1 gallon per minute.
How many pounds of salt are dissolved in the solution in the backpack at the instant when it overflows?

Let S be the amount of salt (in pounds) dissolved in the solution in the backpack at time ¢. Write down
the rate equation for S; it is the inflow rate minus the outlow rate:

45 _ (gsbs) (p8aL) _(_Sls ) [ eal)
dt gal min 1+t gal min

In both terms, I've multiplied the concentration by the flow rate. Everything is straightforward except

S
perhaps the To: term. This is the concentration of salt in the tank at time ¢. Why? First, S is the

amount of salt (in pounds) dissolved in the solution. Now there is 1 gallon in the backpack initially, and the
volume increases by 2 — 1 = 1 gallon each minute — so after ¢ minutes, there are 1 + ¢ gallons. Thus, the

concentration is T+ This goes into the outflow term, because it’s the concentration of salt in the fluid

draining out.

Notice that — has the units pounds per minute. And if you cancel the gallon units on the right side,
everything on the right has the units pounds per minute as well. This serves as a check that you’ve written
down something sensible.

Rearrange the equation:
ds

dt

ﬁ_{.i:l_

- 1+t dt 1+t

Find the integrating factor:
1
exp / 111 +
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Therefore,

1
S(L4t) = /(1+t)dt: L
When ¢ =0, S = 0 (because there was pure water in the backpack initially):
1 1
- ]_ = — = ——,
0 5 +C, C 5

Now

S(1+t)= %(1+t)2 —%,

1 1
_lagp it
§=30+0-351

DN | =

Finally, when does the backpack overlow? The capacity is 5 gallons, there is 1 gallon initially, and the
volume increases by 1 gallon each minute. Hence, it overlows when t = 4:

1 1 1
S=-(144)—-—— =24 ds. O
2(+) 515 pounds

It is important to know when a differential equation has a solution (the existence problem). Some
equations have solutions only for certain sets of initial conditions; I'll give an example below of an equation
with no solutions.

It’s also important to know, if a solution is found, whether it is the only possible solution. Geometrically,
the question is whether there is a single solution curve passing through a given point. This is called the
uniqueness problem. I will give an example later on of an equation with infinitely many solution curves
passing through a point.

These questions can be answered for certain classes of differential equations.

Consider the initial value problem

Yy +P(x)y=Q(x),  y(zo) = vo-

The existence and uniqueness theorem for first-order linear equations says that if P and @ are
continuous on an interval (a,b), then there is a unique solution satisfying the initial condition.

dy 3 z+1
E lee. =4+ —y=6——+,y(2)=0.
xample da:+:v—1y (x_l)Qay()
3 .. . zx+1 . . .
P:—1;1t is continuous for z > 1 and for z < 1. Q:6W;1t is continuous for z > 1 and for
T — T —

z < 1. The initial condition is x = 2, y = 9. Since x = 2 lies in the interval z > 1, there is a unique solution
to the initial value problem for x > 1. Notice that you know this without solving the equation!

In fact, the solution is
22 —6x+5

y—w, x> 1.

6



Here is the direction field for the equation:

RN
N NN
NN

|
A
AT

/

/

———————————

e R SO
TN

e
.///////
———

V4 \ N

Notice the singularity along the line x =1. 0O

Example. zy' + 2y = 3z has only one solution defined at z = 0.
2
To see this, rewrite the equation as y' + —y = 3.
x

The integrating factor is
2

I:exp/—dm:wz.
x

Then
yx? :/3:r2da: =234+ C.

The solution is
. C

y=z+ poR

y = x is a solution (set C = 0), and it’s defined at & = 0. However, if C' # 0, the solution is not defined

at ¢ = 0.
Here’s the direction field:

ey
Il \\N> ./
R NSy
1] N=,//7/
I \N 277
(YN 77777
LTI > 701
ALy rrrrrr
L LL ettt
AN
AN Lttt
///ﬁ\\\ Frrrr
SN
v

Notice that the solution y = x is the only solution that crosses the singularity at z = 0.
On the other hand, the solutions change dramatically if the equation is changed just a little. Consider

2
zy' — 2y = 3z. Rewrite it as y' — Y= 3.
The integrating factor is
2
1= exp/——dw =z 2
x

7



Then
3 3
yx_2:/—2dw:——+c.
x x

The solution is
y = -3z + Cz>.

In this case, y is defined for all z, for all values of C.

However, note that the initial value problem y(0) = 0 has infinitely many solutions, since y(0) = 0 for
any value of C'. On the other hand, if yo # 0, the initial value problem y(0) = yo has no solutions.
Here’s the direction field:

\
\ \
/
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S
e =N S e

/

w\

NS
N

1 R

NN NS S

\

A
A

\

/

NN N
NN N
——— NN N

A

—y

———— NN
<N

PN NN

You can see all the solutions curves emanating from the origin, corresponding to the infinitely many
solutions to the initial value problem with y(0) =0. O

The existence and uniqueness theorem stated above applies to first-order linear equations. There are

similar results for other classes of equations. However, the situation for an arbitrary differential equation is
often not so nice.

Example. (An equation with exactly one solution) Suppose that

dy ? 2
— ) +y°=0 for a<x<b.
dz

A sum of squares is 0 if and only if both terms are 0. Therefore, y = 0, and this is the only possible
solution. 0O

Example. (An equation with no solutions) Suppose that

dy 2 9
- =0
(i) +=
has a solution y = f(z) on the interval @ < < b. Then x = 0 for a < & < b, which is ridiculous. XHence,

the equation has no solution on any open interval. 0O

Example. cosy’ = 0.



cos junk = 0 when junk is an odd multiple of 7. Thus,

™

y’:(2n+1)2, s0 y:(2n+1)ga:+0, n € Z.

5
This is actually a two-parameter family of solutions. That is y = ga: + C' is a family of solutions,

™
y = —x + C'is a family of solutions, and so on. In this situation, there are infinitely many solutions passing

through each point.
I’ve drawn the family of solutions curves below for n and ¢ each going from —10 to 10 in increments of
4.

You can see that it looks as though many curves pass through a given point. 0O

@2004 by Bruce Ikenaga 9



9-28-1998
Separation of variables

In some cases, you can solve a differential equation
fleyy)=0

by moving all the z’s to one side and the y’s to the other. Then solve the equation by integrating both sides.
This is called separation of variables.

Example. z? dz + y(r — 1) dy = 0.

Separate:

eide +yle —1)dy =0
2
—/ v da::/ydy
r—1
1
—/(x—i—l—i——) da::/ydy
x—1

1 1
—<§x2+x+ln|x—1|)—|—cz 53/2

Integrate:

—2?—x—2n|e— 1|+ Cy =y
Observe that there 1s one integration step, hence only one constant.
Note also that in the last line I replaced 2C' with Cy. It would not be wrong to write 2C', but this is
neater. You can always rename constant quantities to make the result look nicer.
Finally, the problem did not include an initial condition; hence, I've stopped at y?, rather than taking
square roots. Without an initial condition, I can’t tell which square root to take. 0O

Example. (Exponential growth or decay) Let a be a constant. The exponential growth or decay
equation describes a situation in which a variable grows or shrinks at a rate proportional to the amount
present:
dy
% = ay.

Separate:

Integrate and solve for y:
1n|y|:ax—|—C’, |y|:eax+C:eCeax’ y:COeax.

(I've replaced +e® with Cy.) If @ > 0, then y increases as @ increases: exponential growth. If a < 0,
then y decreases as x decreases: exponential decay. 0O

Example. (Logistic growth) In the real world, things cannot grow without bound. In many cases, there is
a natural limit to the ability of an environment to support the growth of a population. For example, there
are always limits to the food supply and space.



In many cases, this situation is modelled by the logistic equation. Let a be a constant. The logistic
equation is

AN N
E‘C‘NO_K)'

AN _ (N
ar K

Separate:

[ P —p

Compute the integral on the left by partial fractions:

1 A B

NE-N) N TE=-N
1= A(K — N)+ BN
1
Set N =0;then 1 = KA, s0 A=

1
—. Set N = K; 1= KB, so B=—. Therefore,
K K

BN S S (A
N(K-N) K\N K-N)°

1 1
/(N—i—[(—]\f) dN_/adt

In|N|—1In

Back to the integration:

K—N|=at+C
Now solve for N in terms of ¢:

In

N
= at
K—N‘ at +C

N —
K_—N| °©

at+C — eCeat

N
K—-N

— Coeat

N = [(Ooeat - CQ@MN

N (1+ Cpe®) = KCpe®
n = K Coe®
1—|— C’oe‘”

Note that tlim N = K. Thus, K is the limiting population. It is often called the carrying capacity,
—00
the largest population that the environment can support. 0O

Example. (Dropping solutions) Consider the equation

dy 2
29— 1)2/3.
==+



Separate:
dy 2
29— 1)2/3
7, = @ =3)y+1)

[ty = -9

1
ay+nﬂ3:§@—3ﬁ+c

Integrate and solve for y:

1
v+ 1)Y= Lo =3 + G

1 3
y+1:<6@—3f+00

y = (é(x—3)2+00)3—1

All of this looks routine. However, note that y = —1 is a solution to the original equation:
ﬁ:o and (x—3)(y—|—1)2/3:0
dx

You can see the solution y = —1 as a horizontal line in the direction field below:

sl
NN AN
VNSNS
VNN
VNSNS
VAN
NN

e S
NN T
NN -
NN
\\\\\\\ AN
NNNNNST
RN

1 3
However, you can’t obtain y = —1 from y = (6(1‘ -3)2+ C'o) — 1 by setting the constant Cy equal

1
to a number. (You’d need to find a constant which makes 6(1‘ —3)24+Co =0 forallz.)

Two points emerge from this.
1. You can often drop solutions by performing certain algebraic operations (in this case, division).

2. You don’t always get every solution to a differential equation by assigning values to the arbitrary
constants. 0O

Example. (Equations of the form ¢ = f(ax + by + ¢)) A standard rule of thumb is to substitute for an
expression which appears “a lot” in an equation or expression. A differential equation

Y = f(ax + by +¢)
can be reduced to a separable equation by the substitution v = ax + by + c.

3



Consider the equation ¢ = (r +y+1)%. Let v=2+y+ 1,50 v/ = 1 +y'. Then

v—1=w
dv 9

e 1
dx vt

[
arctanv = x + C'
v=tan(z + C)
z+y+1=tan(x+C)
y=tan(z+C)—z—1. O

@1998 by Bruce Ikenaga 4



9-28-1998
Exact Equations and Integrating Factors

An equation
M(z,y)de+ N(z,y)dy =0

1s exact 1if

af _ af _
3_93_M and %_N for some f(x,y).

This is the same as saying that the vector field (M (xz,y), N (z,y)) is a gradient field (or a conservative
field) — in fact, (M (z,y), N(z,y)) = V{.

The reason this is important is that an exact equation can be integrated. Here’s an example:
(32%y — 3y) de + (2* — 3x) dy =0
If f(z,y) = 23y — 3zy, then

of

o =3z%y — 3y and g—:{;:x?’—i%x.

Therefore, the equation may be rewritten as

a—fdar:—i—a—fdyzo, or df =0.
Ox Oy

Integrating both sides gives f = C, i.e. 3y — 3zy = C. The differential equation is solved.

It’s useful, then, to be able to tell when an equation M dx + N dy = 0 i1s exact. This amounts to
determining if (M, N) is a conservative field. This is a problem in multivariable calculus, and the solution
is well known: With reasonable conditions on M and N, the field (M, N} is conservative if and only if
oM _ ON
oy oz’

Example. Solve (siny —sinz)dz + (xcosy + 1) dy =0, y(0) = 1.

. . ON
M =siny —sinx, N =wcosy+1, so —— =cosy, —— = cosy.

0y Ox

The equation is exact.
I need to find a function f such that

—— =siny —sinx and —f —wxcosy+ 1.

Ox Oy

I can use the partial integration technique which is used to recover a potential function for a conservative

field. 5
Integrate M = 3_f with respect to x:
z

0 . . . . .
a—f:smy—smx, SO f:/(smy—smx)dx:xsmy—l—cosx—l—g(y).
x

Here ¢ is constant with respect to x, so 1t is a function of y alone.
Now differentiate with respect to y:

d
J:cosy—l——g: a—f:ar:cosy—l—l.
dy Oy

1



This means that P
d—Z:l so g(y)=y+h.

h 1s a numerical constant, which I may take to be 0. Then
f=xsiny+cosx +y.

The original equation becomes df = 0, so f = C by integrating both sides. The solution is
zsiny+cosz+y=C.

(A common mistake is to write f = xsiny + cosz + y for the solution. However, this is just the
potential function. The solution to a first-order equation ought to contain an arbitrary constant — hence,

zsiny+cose+y=C\)
Finally, plug in the initial condition = 0, y = 1:

0-sinl4+cos04+1=C, C=2.

The solution 1s
rxsiny +cosx+y=2. 0O

1
— —2xyt — 4z

d
Example. Solve d_y =Y

.
z — + 423
Yy

The equation is not separable, nor is it first-order linear in x or in y. Rewrite the equation as

1
(— — 2wyt — 41‘) de — (% + 4x2y3) dy = 0.
) )

Now
1 oM 1 ON 1
M==—2xy*— 4z, N:—£—4x2y3, 0 — = —— — 8z, — = —— — 8y’
y y? dy y? O y?
o aof af
The equation is exact. I must find an f such that P = M and ol N.
x y

0 .
Integrate M = 3_f with respect to x:
x

0 1 1
—f: — — 22y — 4z, so f:/ (——2xy4—4x) dx = f—x2y4—2x2+g(y).
Y Y Y

Now differentiate with respect to y:

z dg Of z
AN N B L R
gy T gy e
Therefore,
d
d—Z:O and g¢(y) =h=0.
Hence,

f:f—x2y4—2x2:C’. d
)



Example. The equation
6
(—y - 6y2) dz + (3 — 4ay) dy = 0
x

is not exact, because

3_]\7 = —4y while 6—M = 9 — 12y.
Ox 0y x

In some cases (such as this one), it may be possible to multiply by something which will make the equation
exact. Suppose that something is called P. I want this equation to be exact:

PMdez+ PNdy=0.

This means that

OPN _OPM
dx Oy
In general, you can’t solve this for P without some other conditions. Suppose that P is a function of z
only. Then

Then
oM  ON
OP 9y oz
— = P.
Ox N
oM  ON
If Oy oz is a function of x (but not y), this equation is separable. T can solve it for P in terms

of . Then I multiply the original equation by P to get an exact equation, and I solve the resulting exact
equation.
Going back to the example,
OM ON  ¢—8zy

Oy - or _ x _ 2
N 3 —day oz
By the derivation above, the integrating factor P satisfies
oM  ON
6_P: dy aQﬁp or d_P:gp
Ox N de =z

Separating variables and integrating yields P = 2. Now go back and multiply the original equation by
2?2; it becomes

(6xy — 6x2y*) de + (322 — 423y) dy = 0.
This equation is exact:

oM ON
3—3/ = 6z — 1227y, 9 = 6z — 1227%y.

You can check for yourself that the solution is

3zty — 2% =C. 0



ON OM
There 1s a similar result which applies when Or  dy
two results below.
Given an equation M dxz + N dy = 0 which is not exact:

is a function of y only. I'll summarize these

oM  ON
Oy oxr . . . . .
1. If — 5y Bsa function of x alone, then an integrating factor P is given by
oM  ON
P = exp / Oy O
N
ON oM
Ox dy . . . . .
2. If — s function of y alone, then an integrating factor P is given by

ON OM

P:exp/%dy.

Find the integrating factor, multiply the original equation by the integrating factor, then solve the
resulting exact equation.

N M N M
As a matter of strategy, then, if 3_ + a—, find the difference 3_ — 6— and divide it by M
Ox Oy Ox Oy
(respectively by N) to see if you get a function of y alone (respectively x alone). Note that you use
oM  ON ON

—— — —— in the # case but — — —— in the y case: the sign does make a difference!
Oy Ox Ox Oy

It is also possible to find integrating factors in other (more complicated) cases.
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9-28-1998
Homogeneous equations

A function f(z,y) is homogeneous of degree n in z and y if

flax,ay) = a" f(z,y).

Roughly, this means that the “total power” of # and y is the same in all the terms of f(x,y). Here are
some examples.

Example. sin s homogeneous of degree 0:
)

. ax .z 0
sln — =sln — = a
ay

. x
sin—. 0O

2 — 3y

Example.
S5z + 4y

is also homogeneous of degree 0:

2ax — 3ay  2x — 3y 02z — 3y
= =a .
Sax + 4ay  Sxr + 4y S5z + 4y

Example. cos z is not homogeneous of any degree:
cosax # a" cosx

is not an identity for any n. O

Example. 42° — 723y? + xy? is homogeneous of degree 5:

4(ax)’ — T(ax)?(ay)? + (ax)(ay)* = a® (49:57’1‘33/2 + J:y4) .0

Here is how this applies to differential equations. A first-order equation
M(z,y)de+ N(z,y)dy =0

is homogeneous if M and N are homogeneous functions of the same degree.

Example. The equation
(% = 3zy) doe + (Te? — y*)dy =0

is homogeneous, since % — 3zy and Tx? — y? are homogeneous of degree 2.

On the other hand,
(x +5y) dr — (2* + 4y*) dy = 0

is not homogeneous; x + 5y and z? 4+ 4y” are individually homogeneous, but not of the same degree.

1



(sinw — cosy)de + xcosydy =0

1s not homogeneous, since sin « — cos y and x cosy are not homogeneous. 0

The following two facts can be used to simplify a homogeneous differential equation.

M
Fact 1: If M and N are homogeneous of the same degree, then — is homogeneous of degree 0.

Proof:

Fact 2: If f is homogeneous of degree 0, then f can be expressed as a function of Ly
x

1
Proof: Since f is homogeneous of degree 0, f(ax,ay) = a®f(x,y) = f(z,y) is an identity. Set a = —:
x

Yy _
7 (14) = fla,y).
The left side is a function of g d
x

Now suppose
Mde+ Ndy=20

is homogeneous. Rewrite it as
dy M
dr ~ N
The right side is homogeneous of degree 0 (Fact 1), so it can be written as a function of J (Fact 2).
x

Suppose then that

v=s()
N — 9 x
Let y = va, so Y — v. Then
z
M
_W:g(v)a
and by the Product Rule,
dy _,
de U e

The original equation becomes

d d —
v—|—x£:g(v) or é:g(v)Tv

This equation can be solved by separation of variables.

3v—y
x—l—y'

Example. Solve ' =

The right side is clearly homogeneous of degree 0.

2



d d .
Let y = vx, so Yy + Py Substitute:

dx dx
dv 3 —-v dv 3 —vw B4 v1-v)
v+x%_1—|—v’ x%_l—l—v_ a 1+vw ’

Separate:
/ 1+v / dx
——dv= | —.
B3+v)(1 —v) x

Decompose the integrand on the left using partial fractions:

1+ _ A n B
B+v)(1—-v) 34v 1-w

l+v=A(l—-v)+ B3 +v)

1 1
Setting = 1 yields 2 =4B,s0 B = 5 Setting = —3 yields —2 =4A4,s0 A = —5 Therefore,

v 11
(3+v)(1—v)_2 3+v 1—w/

1 1 1 dx 1
/§<—m+1_v) dv = e 5(—1n|3—|—v|—1n|1—v|)_ln|x|—|—C’.

Combine the logs on the left, then exponentiate to kill the logs:
In|3+v)(1 —v)]=—-2Inlz|-2C, @B+v)(l—-v)=—.
Finally, put y back:

(3+%) (1—g) :%, (B +y)(z —y) = Co. O

X

Example. Solve (z —ylny+ ylnz)de + 2(lny — Inx) dy = 0.
Rewrite the equation as

(x—yln%) dx—i—xln%dyzo.

z—yln Y and z1n ¥ are homogeneous of degree 1.
z z
Rearrange the equation:
Y
In=—=«
dy Yy T

de LY
z
: S Yy dy dv :
The right side is homogeneous of degree 0. Let y = vz, so v = = and P + T Substitute:
z z z
n dv _ zvlnv—2z wvinwv—1 dv _ vlnv—1 1
YT T T zlne . e 0 Yde . Inw YT e

Separate:

/lnvdv:/ldl‘.
x

3



Integrate Inv by parts:

— d
dv f v
+ Inwv 1
N\
1
- = =
v
Therefore,
1
/lnvdv:vlnv—/—~vdv:vlnv—/dv:vlnv—v—l—C.
v
Hence,
vlnv—v=lne+C.
Put y back:
glng—g:hub—l—C', ylng—y:xlnx—l—Cx. d
r r x x

Example. Solve (¢ +y+ 1)de + (2 + 2y — 3) dy = 0.

This would be homogeneous if the “1” and “3” weren’t there. The idea is to make a preliminary
substitution
r=u+h, y=v+k.

I will choose h and k so that the result is homogeneous.
Since dx = du and dy = dv,

(u+v+h+k+1)du+ (u+2v+h+2k—3)dv=0.
I want to pick h and k so that the constant terms go away:
h+k+1=0, h+2k-3=0.
Solving simultaneously, I obtain & = 4, h = —5. The substitution is
r=u—-95 y=v+4

With this substitution, the equation becomes

dv u—+ v
d 20)dv =0 — = .
(u+v)du+ (u+2v)dv , or - ——
d d
Letv:wu,sow:gand—v:w—l—u—w.
u du du
Then
dw u+ wu 14w dw 14+w 2w? + 2w+ 1
wHu—=— = — , U— = — — =
du u + 2wu 14+ 2w du 14+ 2w 2w+ 1
Separate:
2w+ 1 du 1
——  — dw=-] —, ZIn|2uw?*+2 1l =-1 .
/2w2—|—2w—|—1 w o 2n|w—|— w+ 1] nlul+C
Put v bacK;
1 2
“ln 2(3) +23+1‘:—ln|u|+0.
2 U U

4



Put # and y back:

—4\* —4
2 (¥ +2¥7 % 4
x+5 x+5

Example. Solve (z +y+ 1)de+ (22 +2y — 1) dy = 0.

This looks like the previous problem. But if you let

r=u+h, y=v+k,

=—In|e+5/+C.

and then try to choose h and k so the constant terms go away, you’ll get stuck!

Reason: The h and k equations become
h+k=-1, 2h+2k=1,

and these equations are inconsistent — there are no solutions.
Instead, let z = z 4+ y, so dz = dx 4+ dy. Substitute and eliminate z:

dz 2z —1 dz_2z—1

(z+1)(dz—dy)+ (2z — 1)dy =0, 1—d—y: 1 Td

Separate:

z—2

z+1 B

1
—/Z+ dz:/dy, —z—=3In|lz-2|=y+C.

Put # back:
—z—y—3lnjlza+y—2/=y+C. O
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9-28-1998
A Review of Elementary Solution Methods
Here is a list of the kinds of equations I've discussed so far:
1. Separable equations.
2. Exact equations.
3. Homogeneous equations.
4. First-order linear equations.
5. Bernoulli and Riccati equations.
6. Equations requiring clever substitutions.
7. Linear constant coefficient homogeneous equations.

Linear constant coefficient homogeneous equations are straightforward, and I won’t review them here.
There are two things involved in solving the other types of equations:

1. You need to know how to apply each technique.
2. You need to know which technique to apply in a given problem.

Sometimes, 1t is simply a matter of trying one technique after another. However, this doesn’t mean that
you should use the first thing that works — there may be an easier way. Take the time to think about how
each of the methods would work in a given problem.

Example. (22 — 3y + 1)dz — (32 +2y — 4) dy = 0.

Write the equation as

(22 —3y+1)de = (32 + 2y — 4) dy.

Evidently, there 1s no way to separate the z’s and y’s.

The equation is not homogeneous; however, it could be converted into a homogeneous equation by the
substitutions £ = v + a, y = v + b. After making the substitutions, you’d need to solve for a and b so as to
make the constant terms vanish.

This method will work, though it is a little tedious.

Even when you have a method that will work, it is often wise to look at the problem a little longer to
see if there is an easier way.

The equation does not seem to be first-order linear. On the other hand,

6—M:—3 and a—N:—3,

0y Ox
so the equation is exact. The method of exact equations is usually easier than the method of homogeneous
equations, so I'll use exact equations rather than the substitution I noticed earlier.

I must find an f such that g—f = M and g—f = N. Integrate M with respect to a:
z )

f:/(?x—i%y—i—l)dx:x2—3xy—|—x—|—g(y).

0 .
Compute 3_f and set it equal to N:
)

—Ber+2y—4)=—=-3e+—.



Therefore,

d
g4, g=—y +4y.
dy

Therefore, f = % — 3zy + x — y> + 4y. The solution is

2 —3zy+z—y +4y=C. O

Example. zy’ = y + /y? — 2.

.. d
The equation is not separable. Solve for d—y:
x

d 2 _ 42
dy _y V' —a?
de =z z
It is not first-order linear in y.
x
Solve for —:
olve for a7
dx z

dy y+y2 —a?

It is not first-order linear in x.
Check for exactness. Write the equation as

(y+Vy?> —2?)de —xdy=0.

Then

It is not exact.
It better be homogeneous!

dy _ytvyri—at oy @f—l
xr

dx

The right side is a function of g; the equation is homogeneous.
z

dy dv
Let y = vx,s0 =—— = v+ x—. Then
dx dx

d 7.2 1 2 d
v—l—x—v:vx—i— vt =v+Vv:4+1, x—v:\/vz—l—l.
x x

dx d

Separate variables:
/ dv /ld In[Vv2+ 140 =Inlz|+C
—= | —dz, In|Vv v| =1In|x .
Vo241 z

I’ll do the v-integral separately:

(sec 0)?

dv
/\/vz—l—lz V(tan8)? +1

2

do =



92
/Mdez/Secedezlnlsec9+tan9|+C:1n|m“|+C~

(sec 6)?
Jies

Exponentiate both sides and rename the constant:

\/(%)2—1—1—1—%:001‘. O

Put y back:

=lIn|z|+ C.

In

Example. (322y® — 2y)dr — x dy = 0.

The equation is clearly not homogeneous or separable.

oM ON
— =9%%* -2 but — =—1.
oy Y o
It 1s not exact. J
Solve for ﬁ and d_;
dy 3 2 dx x
— = - — d —=——-——.
dx 3zy P dy  3x%y% — 2y

It is not first-order linear in = or y.

d .
Rearrange the d—y equatlon:
x

d 2
il + Sy =3z,
de =z
) . . -3 5 dv _ady . .
It is a Bernoulli equation. Let v = y =y~ ~. Then i et Multiply the equation by —2y
z z
d 4
—2y_3—y — —y %= —6z.
de =z
Substitute:
dv 4 6
— — —v = —6z.
de =z

This is first order linear in v. The integrating factor is

4
I:exp/——dd;:x_4.
x

Therefore,
ve~t = /—690_3 de =327 +C, v=3z"+Caz*

Put the y’s back:

1
-2 _ 9.2 4 2 _
y o =3z + Cz®, = 37yt

d
Example. Y _ tan ycot x — sec ycos x.
x

-3.



The equation is not first-order linear in either variable. It is not separable, nor is it homogeneous. It is

not Bernoulli.
Is it exact? Rearrange it:

(sin@ — siny) cos & dx + sinz cosy dy = 0.

Therefore,
oM

—— = —cosycosxz and —— = coszcosy.

0y Ox

It is not exact!
The idea here is to try to substitute to simplify the equation. The test of whether a substitution is

the right one is whether it works! One rule of thumb is to look for common expressions — expressions that
appear in several places. Another rule of thumb is to look for substitutions that eliminate one variable or
another. In this vein, it is good to look for u-du combinations.
In the equation (sin « —sin y) cos # dz +sin z cos y dy = 0 notice the “cosy dy” at the end, the differential
of siny. Try u = siny, so du = cos y dy:
du cosx

(sine — u)cosx dw +sinx du = 0, i
x sin

= —Ccosx.

The equation is first-order linear in w.
The integrating factor is

cos . 1
I:exp/— —— dz = exp—In(sinz) = —.
sin x sin x
Hence,
1 cos .
U— :—/ ——dz = —In|sinz|+ C.
sin x sin x
Solve for u:
u=—sinzlIn|sinz|+ Csinz.
Put y back:
siny = —sinzn|sinz|+ Csinz. O

Example. A tank contains 20 gallons of pure water. Water containing 2 pounds of dissolved yogurt per
gallon enters the tank at 4 gallons per minute. The well-stirred mixture drains out at 4 gallons per minute.
How much yogurt is dissolved in the tank mixutre after 10 minutes? Find the limiting amount of yogurt in

the tank as t — oo.

Let Y be the number of pounds of dissolved yogurt at time ¢.

v = inflow — outflow = 4g_z.1l QE — 4g_z.1l ¥ b .
dt min gal min 20 gal

d_Y_|_Z—8
dt 5

You can do this by separation or by using an integrating factor. I will do the latter:

Then

1 t
I:exp/gdt:expg.

4



Then . . .
Yexpgz/expgdt:40exp3—|—0.

The solution 1s y
Y =40+ Cexp %

Initially, there is no yogurt in the tank:
0=Y(0)=404+C, so C=-40.

Therefore,
—1
Y =40 — 40exp?.
When ¢ = 10,
Y (10) = 40 — 40e™* ~ 34.58659.

—1 .. .
Ast — 00, exp— — 0,80 Y — 40. In the limit, the amount of dissolved yogurt approaches 40 pounds.

This makes sense, since the tank is being flushed with water containing 2 pounds of yogurt per gallon, and
the tank holds 20 gallons. 0O

@1998 by Bruce Ikenaga 5



Chapter 3

Infinite sequences and series

Infinite sequences
Definition:

An infinite sequence of numbers is a function whose domain is the set of positive
integers.

¢ A sequence is a list of numbers

3,,8,,83,- 8- --

the first term a,, the second term a, , and so on the nth term a, .
¢ The integer n is called the index of a, .

¢ We can think of the sequence

,8,,85,. .18, -

as a function that sends 1 to a,, 2 to a, and in general sends the positive integer n to
nth term a, .

+ The sequence can be written as {a, } .

¢ The sequence
\/i!\/zl\/gl"‘1\/ﬁl‘ o

can be written
{a,} ={x/ix/§\/§\/ﬁ}

or



¢ The sequence 1,2,3,4,... is not the same as the sequence 2,1,3,4,....

Convergence and divergence

Definition:

The sequence {a, } converges to the number L if for all &> 0 there exists an integer N
such that for all n

n>N =|a, -Le.
If no such number L exists, we say that {a, } diverges.
¢ If {a,} convergesto L, we write

lima, =L

n—oo

or simply a, — L, and call L the limit of the sequence {a,}.

Remark:
If x >0, then there exists an integer N such that

1
X >—.
N

Example (1):

By using the definition, prove that

() lim L -0 @ lim 1214 3) lim = =0.

n—o N noo N n—»o0 2

Solution:

(1) lim £ =0

n—o N

Let &>0 be given. Now we must show that there exists an integer N such that for all
n



n>N = |1—0|<5 = |1|<g = l<5
n n n

&£ >0, from the above remark, there exists an integer N such that

g>Ni. (1)

Ifn>N = 1<i (2)
n N

then from (1) and (2) we get

1
—< E&.
n
Then lim i:0.
n—o N
) lim =11
n—oo n

Let &>0 be given. Now we must show that there exists an integer N such that for all
n

n-1-n

n-1 -1 1
n>N = |—-1lke = | ke = |—ke = —<¢
n n n

.+ &£>0, there exists an integer N such that
£>—. 3)

fn>N = i<i (4)
n N

then from (3) and (4) we get

—<é&.



Then lim 2=t _1.

n—-o N

3) lim inzo

n—oo

Let &>0 be given. Now we must show that there exists an integer N such that for all

n

n>N = |in—0|<g = |in|<g = in<g
2 2 2

-+2">n fornell :insl
2 n
fn>N > i<i
n N

.+ &£>0, there exists an integer N such that

1
£>—.

N

then from (5), (6) and (7) we get
1
2—n<5.
Then lim 1 0.
n—oo 2n

Definition: (diverges to infinity)

()

(6)

(7)

The sequence {a,} diverges to infinity if for every number M there exists an integer N

such that for all

n>N = a,>M.

If this condition holds we write

lima, = ora, —»o.

n—oo

4



Similarly if for every number m there exists an integer N such that for all
n>N =a,<m,
then

lima, =—c0 oOr a, —»> —oo.

n—oo

Calculating limits of sequences

Theorem (1):

If lima, =A, limb, =B and k is a constant, then

n—oo N —oo

1) limk =k

n—oo

(2) lim(a, +b,)=A +B

(3) limka, =k lima,

n —oo n—oo

4) lim(a, -b,)=A -B

(5) lim a—nzg; B £0.

n—owo
n

Example (2):

By using Theorem 1, find the following limit:

(1) lim (—ljz—nmi:—l-ozo.

n—o n n—wo N
_ . 1
1 n-1 -1 nlglgo(l—nj lim1-fim >
(2) lim —J: lim| —2— |= lim nj=—"2 =12» 1oef _ =1
noo\ N nool N noo| ] lim1 lim1 1
n n—oo n—oo

(3) lim (%j:SIim L imt=s5.0.0-0.

n—wo\ N n—-o|l n—wo



4-7n® 4 . (4
o lim| —-7
—7n" 6 6 7 _,w( 6 j _
(4) Iim(467n jzlim D= lim| D = 122N 0-7
noxo| N°+3 nswol nN°+3 n—o 1+76 I|m(1+

n6 n n—o

Theorem (2) (The Sandwich Theorem for sequences)

Let {a,}, {b,} and {c,} be sequences of real numbers. If a, <b, <c holds for all n
and if lima, = limc, =L, then

n—oo n—oo
limb, =L.
n—oo
Example (3):
Prove that (by using Theorem 2)
@) 1im 22N _g ) lim = =0 @) lim(-1)" £ =0.
n—oo N n—»o0 2 n—oo n
Solution:
@) lim £ _g
n—->o N
s|cosn|<1 = -1<cosn<l = _lgcosngi
n n n
o lim 1 =0, then from Sandwich Theorem lim cosh _ 0.
n—oo N n—o |
.1
(2) Jim > =0
w2">n = Osis1
2" n

o lim 1 =0, then from Sandwich Theorem lim 1 =0.

n—o n—ow 2"



3) lim(-1)" £ =0
n—oo n
_ig (_1)” lgi

n n n

o lim 1 0, then from Sandwich Theorem lim (-1)" % =0.

n—o N n—ow

Theorem (3): (The Continuous Function Theorem for Sequences)
Let{a,} be asequence of real numbers. If a, — L and if f is a function that is

continuous at L and defined at all a, then f (a,) —>f (L).

Example (4):

Show that, applying Theorem 3,
@ "L g ) 2¥" 1.
n
Solution:

(1) ”T”—u

Taking a, :nT+1 and f (x)=+/X .

1+l

: n+l
lima, = lim——==lim—"1 =1 = L =1.

Nn—>00 n—wo N n—co
Then, by Theorem 3,
fa)of(L) = ”T”—Ni:l.
2) 2'" -1

Taking a, =% and f (x)=2" .



- lima, :Iimizo = L=0.

n—oo n—oo N

Then, by Theorem 3,
f@)->f(L) =2"—>2°=1

Theorem (4):

The following six sequences converge to the limits listed below:

1- fimn g
n—wo N

2- limYn =1
n—oo

3- limx" =1 (x >0)

n—oo

4- limx"=0 (x |<1)

n—o0

5- Iim(1+£j =e* (any x )

n—o0 n

n

6- limX—=0 (any x)

n—oo nl

In the formulas (3) and (6), x remains fixed as n — oo.

Example (5):

By using Theorem 4, find the following limits

2
(1) lim " @) lim¥n? @) lim¥3n
n—o N n—>0 n—»o0
n n n
i i — 1
4) Ilm(—ij (5) Ilm(n—zj (6) lim 00
n—owol 2 n—wol N n-w Nl
Solution:
2
(1) lim Inn = lim 2Inn =2 Iimln—n:Z-O:O (from formula 1).
n-owo N n—wo N n—>c N

2
2) lim¥n? = limn?" = lim (n*" )’ :(Iim n””) ~(1)°=1  (from formula 2).

nN—co0 N—o0 n—o0 nN—o0

8



(3) lim/3n = lim(3n)"" = |im(3”n -n“”)z lim3"" - limn¥" =1-1=1 (from formula 3
n—oo n—o0

nN—o0 n—o0 n—o0

with x =3 and formula 2).

n—o

n
(4) lim (—%) =0 (from formula 4 with x = —%)

(%) Iim(n—_zj = Iim(£+_—2j = Iim(1+_—2j =e~* (from formula 5 with x =-2).

n—o0 n n—wo\ N n n—0o0 n

n
(6) lim =%

n—oo n|

=0 (from formula 6 with x =100).

Bounded Sequences

Definition: (bounded sequence)

A sequence {a, } is called bounded if there exists a real number K >0 such that
la, [<K forall n>1.
Definition:

(1) A sequence {a, } is called bounded from above if there exists a number M such
that

a, <M forall n>1.
The number M is an upper bound for {a, } .

(2) A sequence {a, } is called bounded from below if there exists a number m such
that

a, >2m forall n>1.
The number m is an lower bound for {a,}.
(3) A sequence {a, } is called bounded if bounded from above and below.

9



Example (6):

State whether the following sequence bounded from above, bounded from below,
bounded or neither ?

123 n
1)1,2,3,...,n,... 2) = —,— ey —— ...
(1) ) 234 n+1

Solution:

(1) The sequence 1,2,3,...,n,... is bounded from below and lower bound is 1. This

sequence is not bounded from above and so the sequence is not bounded.
(2) EEEL is bounded from below and lower bound isl . Also the

234 n+l 2

sequence is bounded from above because

n
n<n+l—=> —«<1
n+1

and has upper bound 1. Since the sequence is bounded from below and bounded

from above, the sequence EE§L .. 1s bounded.
2 34 n+1

Theorem (5):

If the sequence {a, } converges, then it is bounded.

Increasing and Decreasing Seguences

Definition:
(1) A sequence {a, } is called increasing sequence (nondecreasing sequence) if
a, <a,,, forall n>1.
(2) A sequence {a, } is called decreasing sequence (nonincreasing sequence) if

a, >a,, forall n>1.

10



(3) A sequence {a, } is called monotonic sequence if it is increasing or decreasing

sequence.

Example (7):

State whether the following sequence increasing, decreasing or neither ?

(1)1,2,3,....n,... (2)%%%— (3){ 1

Solution:
(1) ,2,3,...,n,..., a,=n
n<n+l=a <a,,.
Then the sequence 1,2,3,...,n,... isincreasing.

123 n n
), —, A =——
) 234 " n+1

n+l n  (+D)’-n(n+2) n?+2n+1-n®-2n
ca ,—a = —— = =

(n +1)!}n:1

1

" T 42 n+l 0 (n+D)(n+2) (n +1)(n +2)
. .'.a'n+1_a'n>0:> .‘.an+1>an'

Then the sequence EE§L IS increasing.
234 n+l
l o0
3
() {(n +1)!}n:1
1
LA (n+2)! (n+D! (n+Dr 1 -1
" a, 1 M+2)! (N+2)(n+D! n+2
(n+1)!

11

= >0
(n+1)(n +2)



a
el =a,<a,.
a

n

Then the sequence { } IS decreasing.
n=1

(n+1)!

Theorem (6):

An increasing sequence of real numbers converges if and only if it is bounded
from above.

12



Infinite Series

An infinite series is the sum of an infinite sequence of numbers
& +a,+ag+---+a, +---

Definition:

Given a sequence of numbers {a, }, an expression of the form

+a,+ag+--+a, +---

is an infinite series. The number a, is the n th term of the series. The sequence {s, }
defined by

S1=9
32 :a1+a2
33 :a1+a2 +a3

n
S,=a +a,+a;+--+a, =) 3
k =1

Is the sequence of partial sums of the series, the number s, being the n th partial sum.
Definition:
If the sequence of partial sums {s,} of the series converges to a limit L, that is,

lims, =L
n—oo
we say that the series converges and that its sum is L . In this case, we also write

o0
a+a,+a;+--+a, +---=»a,=L.
=1

If the sequence of partial sums {s,} of the series does not converge, we say that the
series diverges.

13



Example:

Prove that the series

1 1 1 1 & 1
+ o=

+ + 4+t = :
1x2 2x3 3x4 n(n +1) an(n+1)

Converges and find its sum.
Solution:

1
a, =
n(n +1)

then the n th term a, can be written as

1 1 1

:n(n+1):n n+1

n

.- Sn :a1+a2+a3+""+an

1 1 1 1 1 1 1
S GG Y

1t

so lims, = Iim(l—il) =1. Then the series is convergent and its limit 1.

n—o0 N—00 n+

Example:

State whether the series Z(—l)”‘1 convergent or divergent ?

n=1

14



Solution:
S, =a =1
s,=a,+a,=1-1=0,
S;=a, +a,+a;=1-1+1=1,
S,=a +a,+a;+a,=1-1+1-1=0

1 nodd
S, = 0
neven

then, lims, does not exist and so the series is divergent.

nN—o0

Geometric Series

Definition:

Geometric series are series of the form
a+ar+ar’+ar’+--+ar" +...=>ar"?
=1
in which aand r are fixed real numbers and a = 0. The series can also be written as
>ar".
n=0
Theorem:

If | r |<1, then geometric series a+ar +ar®+ar®+---+ar" " +...=>ar"™*
=1

a
converges to l— .

o0

5, a
Mar"t=——, |ri.
] 1-r

If |r [>1, the series diverges.

Example:

State whether the following series convergent or divergent . If a series converges,
find its sum ?

15



2 2 2 2 1 1 1

3 3 3 3t 9 27 81
0L w2[3)

Solution:

2 2 2 2 1 1 1 1 2
(1)2+§+3—2+§+---+3n_1+---=2(l+—+3—2+3—3+--~+ ~ +---j:22

: . . : : 1
This series is a geometric series with a=2 and r = 3

-.-r:l<1:>theseriesisconvergentand its sum a__ 2 =§:3.
3 1-r 1-1/3 2
1 1 1 1 1 1 1 >1 1

2) - +—+— .= 1+ =4+ 4. | = -

()9 27 81 9( 3 32 3"t ) nZ:lan_l

This series is a geometric series with a== and r = % :

r:l<1:>theseries Is convergent and its sum a__ 1/9 =1.

1-r 1-1/3 6

2 (-D)"5 5 5 5

3 =5——+—-——+-

(),% 4" 4 4 4

: . . . : 1
This series is a geometric series with a=5 and r = 7

1-r 1+1/4

1, 1 . :
A 7 |= 7 <1 = the series is convergent and its sum

o 3(3-23)-3

This series is a geometric series with a :g and r = g

16




r ::g >1 = the series is divergent.

Theorem:

If > a, converges, then lima, =0.
n=1 Nn—o0

The n th-term test for divergence:

> a, diverges if lima, fails to exists or is different from zero.

n=1 n—o

Example:

The following are all examples of divergent series:

o0
(1) >.n? diverges because lima, = limn? =co.

n=1 n—o n—oo
(2) Z—+ diverges because lima, = I|m—+1:1¢0.
n-1 N n—o0 nowx N
—n 1
3 )Z— diverges because lima, = lim == %0.
2N +5 n—w® nso2n +5 2

(4) Z( ~1)"*" diverges because I|ma = lim(-1)"*" does not exist.

n=1 n—»o0

Theorem:

If > a,=A and >_b, =B are convergent series, then
n=1 n=1

DY (@ +b,)=Ya + b =A+B (Sum Rule).
n=1 n= =1

@Y (a —b,)=>a ~>b =A-B (Difference Rule).
= = n=1L

3) Yka, =k Sa =kA (any number k ).
n=1 n=1

17



Remark:
1- Every nonzero constant multiple of a divergent series diverges.

2- If ian converges and ibn diverges, then i(an +b,) and i(an —b,,) both

n=1 n=1 n=1 n=1
diverge.

Note that:

Remember that )  (a, +b,) can converge when > a, and ) a, both diverge. For
n=1 n=1 n=1

example, ian =1+1+1+1+--- and ibn =(-)+(-)+(-1D+(-1)+--- diverge,

n=1 n=1

whereas > (a, +b,)=0+0+0+--- converges to 0.

n=1
Example:
0 n—l_l
Find the sum of the series > ——— .
n=1 6
Solution:
o] =3 1) & (3)”‘1 1 w( 1 1 j
ré_ 6n—1 _2[6n1 6nlj_nz( 6 6n—1 _nZ:]_ 2n—1 6n—1 '
&1 1 1 1
Then two series >, — and > —— converge because r ==<land r ==<1
n:12n n:]_6n 2 6
respectively.
> 1 1 * 1 1 6
= =2 and = =—.
nz:lzn—l 1-1/2 EGH 1-1/6 5

© 31 1 =/ 1 1 © 1 = 1 6 4
| o S

n-1 n-1 an-1 n-1 n-1
n=1 6 n=1 2 6 n:l2 n= 6

18



Exercises

(1) Determine if the geometric series converges or diverges. If a series converges,
find its sum.

3

4”—1

2 n-1
(“) 1+g+ 9 4ot g + ...
3 3 3

37,
(100)"

(iii) 0.37 +0.0037 +---+

628
- +
(1000)"

(iv) 0.628 +0.000628 +

(2) State whether the following series convergent or divergent . If a series converges,
find its sum

0 5 [E] w3 (32

© 1 . © 1 4
(i) nz {8” n(n +1)} (v) nzzl {n(n +1)_H }

(3) State, why the following series is divergent

o0

@2y (3 gnsin(%j (4) Z'ﬂ(7 _5j

_15 n-1 =14 (03) ut

19



The integral test

Theorem: (the integral test)

Let {a, } be a sequence of positive terms. Suppose that a, =f (n), where f
IS a continuous, positive, decreasing function of x forall x >N (N is

positive integer). Then the series > a, is
n=N

(1) convergent if the integral jf (x)dx is convergent.
N

(2) divergent if the integral jf (x)dx is divergent.
N

Remark:

(1) The function f is increasing on interval 1'if f '(x)>0 Vx €1
(2) The function f is decreasing on interval I'if f '(x)<0 Vx el .

Example:

State whether the following series convergent or divergent

* 1 x 1
1 - 2
()nZ:)ln ()nZ:11+nz
Solution:
* 1
l i
()nZ:1n

Let a, =f (n):%. Then f (x):i , for all x >1, is positive and
X

continuous.

20



o f '(x)=—i2 = f '(x)<0 Vv x >1. Then the function f is decreasing.
X
Then we can use the integral test.

Tf (x)dx = Iimtjldx = Iim[lnx]t1 =lim[Int —In1]=lim[Int]=c0

t—)oolx t > t o> t o>

: . N R
then the integral diverges and so the series > = is divergent.

n=1
> 1
2
@) nz_11+ n2
Leta, =f (n)= >. Then f (x):L2 , for all x >1, is positive and
1+n 1+x
continuous.
o f '(x):—Z—X2:>f '(x)<0 V¥ x >1. Then the function f is
(l+x2)

decreasing. Then we can use the integral test.

0 t
[f (x)dx =lim | L ~dx = Iim[tan‘lx]t = Iim[tan‘lt —tan‘ll]:lim tantt - =
1 ton 1+ X t—oo 1 tow t—o0 4
T T VA
=G 77

then the integral converges and so the series >’
n=1

> Is convergent.
Definition (P-series)

31 .
The series 3 — is
2N

(1) convergent if p >1.
(2)divergent if p <1.

21



Example:

(1) The series Ziz converges because p =2>1.
n=1

(2) The series Z converges because p=3/2>1.

3/2
(3) The series Z— diverges because p =1/2<1.
n

n=1

Exercises

Which of the series converge, and which diverge

0 n 0 1
(1) 210“ 2) Zle (3) Zlm
> Inn = tan"'n
4 —_— 5 6
@ X~ 6) X = (fﬂ) © X1

22



The comparison test

Theorem: (The comparison test)

Let > a,, >.c, and > .d, be series with nonnegative terms. Suppose that
n=1 n=1 n=1

for some integral N

d <c

<a, <c, forall n>N.

n

o0 0
(i) If D> c, converges, then > a, also converges.
n=1 n=1

(i) If idn diverges, then ian also diverges.

n=1 n=1

Example:

Which of the series converge, and which diverge

* 5 x 1 > Inn
1 — 2 — 3 —_—
()HZﬂSn—l ()ngglnn ()Zins
Solution:

* 5

1 -
()nz_:l5n—l
“5n>5n-1= i< 1 :>i< S :>1< Y n>1

5n 5n-1 5n 5n -1 n 5n-1

il diverges because p =1 (p-series), then i% diverges.

n:]_n n=1 -

@2y

o Inn

23



‘>Inn<n Vvn>2>=> l<i Y n>2
n Inn

o0 o0

Zi diverges because p =1 (p-series), then ZIL diverges.

°°Inn
(3)2
Inn n Inn 1
Inn<n Vn>l= —3<—3 :>—3<—Vn>l
n n n n

0

1 i = Inn
"+ D —5 converges because p =2>1 (p-series), then Y — converges.
n=1N n=1 N

Theorem: (Limit comparison test)

Suppose that a, >0 and b, >0 forall n >N (N an integer).

1. If lim S—”:c >0, then Y a, and > b, both converge or both diverge.

n—xp, n=1 n=1

. a 0 o0
2. If lim =0, and > b, converges, then > a, converges.

n—wof) nol nel

3. If lim 2 = o, and Zb diverges, then Za diverges.

n—oo -1 n=1

Example:

Which of the following series converge, and which diverge

*  2n+1 ® 3n+1 ® 8n+\/_
1 3
()Z_ln 21on+1 ()§4n ~2 ()§5+n 24n'?
°°1+n|nn * 3n +5n
5

24



Solution:

*  2n+1

D2

“=n®+2n+1

a, = 22n—+1 Consider b, = 1
n“+2n+1 n

0

The series > b, = Zl is divergent series because p =1 (p-series).

n=1 n=1
2n +1 2+1
AT ) +
im . = fim 0=+20+1 _ lim 22”—+”—|im2—”1:3:2>0
Nl noow noon‘+2n+1 neool+7+72 1
n n n
1 2n+1 . .
b. =) = isdivergent, then Y —————is divergent.
Z Z_ln J Z_ln 2+2n+1 :
* 3n+1
2
()§4n -2
3n+1 )
=———— Consider b, =—.
" 4nd+n?-2 " n?

0

The series > b, = Ziz IS convergent series because p =2>1 (p-series).

n=1 n=1N
3n+1 3+l
oo L s o +
lim 2 = Jim 4n°+n _2_I| 3n—+2n:hm—”:§>0
n—>oobn N—>o0 1 now4nd+ns =2 n—>oo4+£_£ 4
2 3
n n n
i * 1 3n+1 )
b. =% — is convergent, then » —————1s convergent.
Z:: " Z:: 2 J §4n $4n%-2 g
(3)§: 8n+\/_
“—=5+n’+n’?

25



a, :M Consider b, =

5+n2+n7/2' n5/2'

0

The series > b, = Zi

=7 IS convergent series because p =5/2>1 (p-

n=1 n=1

series).

8n +/n g, 1
a. . E.n2.n72 . 8n"?4nd . U2 8
I|m—”=I|m5+n N _lim ————=1lim n =—-=8>0
n—wop n—o 1 n>o54+n°+n N> O 1

n 572 7+ +1
n n n

oY b, = Z% is convergent, then Z&H—\/ﬁm
=1

IS convergent.
ol o b+Nn°+n

()Z

2n -1

a, = 1 . Consider b, = —
2" -1

0

I 1 o :
The series Db, = 22_” (geometric series) is convergent series because

n=1 n=1
r:1<L
2
1
— n
lim@ —im2 =1 _jim -2 —jim—t -1 _150
n—>oobn nowo 1 n-w 2" —1 Ny 1 -0
2" o

0

Zb — zzi is convergent, then >’ 2n1

IS convergent.

=1 n=1 -
* 1+ninn

5

( )nzz n®+5

26



1+nl :
a, :w. Consider b, :l.
n“+5 n

0

The series > b, =>_ 1 Is divergent series because p =1 (p-series).

n=2 n=2
1+ninn 1+Inn
. a . n45 . n+n’lnn . 4
lim = = lim ————= lim ————=lim =0
n—>oobn N—>o0 i nso N°+5 N—>o0 1+£
n n?
& 1. . ©1+ninn. .
Y b, =2 = isdivergent, then Y — is divergent.
n=2 n=1N n=2 N +95
00 2
3n° +5n

(6) n=1 2" (n2 -I-l)

_ 3n®+5n

a, =——— . Consider b, -t
2" (n“+1)

2"

0

I 1 : . i
The series > b, = Zz—n (geometric series) is convergent series because

n=1 n=1L
r=1<L
2

3n° +5n 5
- a, . 2"(n?+1) . 3n°+5n 3+
lim 20— fim =80 i 2 iy n 2350
nawbn N—>o0 437 n»o N°+1 n»wl+;£7 1

2" n?

0 © © 2
b, :22i is convergent, then > 3nn +on
=1 =1

————— s convergent.
2o Z 3 (n?+1) J
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Exercises

Which of the following series converge, and which diverge

© 2n +n?

(@) nzlm (2) 2 r\ e (3) Z_ll T

n®+4n®+1 |

) nzlzn +n% 42 ©) z1 3" (©) nz:lsmn_2
) Stan T ® 307
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The Ratio and Root Tests

Theorem: (The ratio test)

Let > a, be a series with positive terms and suppose that
n=1

a
lim L =,

n—oo an

Then

(1) The series converges if L <1.
(2) The series diverges if L >1 or L is an infinite.
(3) The test fails if L =1.

Example:

Which of the following series converge, and which diverge

o 3" © n" 3"(n © 2"+5
0y = @3T e () @y =
n=1 n! n=1 n! n=1 3
Solution:
© 3”
1 _
( )HZ:1 oy
3I’H—1 3 3I’I
lim =L G _ = lim (n +1)! = lim M Iimi:0<1
n—w g n—oo 37 n—oo 37 n->on +1
n! n!

n

. &3
then the series > — converges.
n=1 .
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2 _
(2) nZ_l o
(n+1)n+1
|
lim 2+ an+1 ||mM
n—o an n—oo L
n!

. (n 1Y
=lim| —+—
n—oo\ N n

n

(n+p"*
n
(n +1) n! m(n +1" _
n—>oo n n—>oo n
nt

1 n
= Iim(1+—j =e>1
n—oo n

then the series >’ n_l diverges.

n=1
3"(n!
@3 00
3"H((n +D)Y° 3-3"(n +1)*(n)°
lim 2L _ im (2n+2)!  _ (2n +2)(2n +1)-2n! _ 3(n +1)
n>e @ noe 3"(nl)? n% 3"(n1)? n—>o (2n +2)(2n +1)
2n! 2n!
2
_lim 3(n+1) _lim3 M E’,"mn+1:§<1
n—o2(n +1)(2n +1) noo 2(2n+1) 2n-=2n+1 4
2 3"(n))?
then the series )’ ont converges.
n=1
2n +5
@3
n=1
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2™ 15
g+l . 12™45 1

. a . .
lim 2L = im =lim= ==1lim
n—>o g now 2" 4§ n>x3 2" 1§ 3n-w

3n

n

then the series )
n=1

converges.

Theorem: (The root test)

Let > a, be a series with positive terms and suppose that

n=1

Ilm\/_ L.

Then

(1) The series converges if L <1.

(2) The series diverges if L >1 or L is an infinite.

(3) The test fails if L =1.

Example:

Which of the following series converge, and which diverge

n2 © 2N
1 2 —
( ) 2 on (2) nzﬂ 3
Solution:

.
1 -
(1) 2
2
tn? (f n)

_ n__

lim e, = lim 7 = lim 7 = lim

2

. &N
then the series >, — converges.
1 2

31
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1

Jﬂf‘lﬂ _r!ﬂl\/*a n%(f)

n

. & 2.
then the series >, — diverges.
n=1 N

o3 ()

Ilmf—llmn(

n—oo n—oo

n
1 ] :Iimi=0<1
n+1 n-xn 41

o0

n
then the series >’ (i) converges.
n=1 +1

32
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Exercises

Which of the following series converge, and which diverge

x, 3n +l
(1) Z (2) Z (3n+1
2 nl > n!
Z_: e ®) nZ::l (n+1)°
| 0 5n+l
() Zln_ ® zz (In n)"

33
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Alternating Series, Absolute and Conditional Convergence

Theorem: The alternating series test (Leibniz’s test)

The series

0
> (D), = —Uy U U
n=1

converges if all three of the following conditions are satisfied

1- The u, ’s are all positive.
2- The positive u, ’s are decreasing:

u, =u,, forall n.

n+1l

3- limu, =0.

n—o

Example:

Which of the following series converge, and which diverge

n+l 10n
n®+16

® s @ 3
Solution:

S n+1 1
1) Z‘l(_l) Y

(i) u, ’s are all positive

(ii)iff(n):%:f(x):xl

X 21 =f '(x):—izgo vV x2>1
X

then f (x)is decreasing and so u,, is decreasing.

34



(i) Timu, = lim = =0

N—>0 n—o N

n+l

. - 2 1
then all three conditions are satisfied and so > (-1)"" = converges.
n

n=1
> 10n
2 _1 n+1
( )2;( ) T 15
u, = gOn , =>4
n°-+16

(1) u, ’s are all positive

(i) if
2 J—
F) =0 )= g o g ) - X182 (A0
n°+16 X“+16 (x ©+16)
2
fx) =220 g vy 2,
(x ©+16)

then f (x)is decreasing and so u,, is decreasing.

10
. 0
_ _ n _Y_
('")nlmu”_nlmn%les_rmhlﬁ_1 0
2
n

n+1
n’+16

then all three conditions are satisfied and so > (-1)
n=4

converges.
Definition:
A series ) a, converges absolutely (is absolutely convergent) is if the series

n=1

i la,| converges .
n=1
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Theorem: (The absolute convergence test)

I Z\a |converges, then Za converges.
n=1 n=1

Remark:

The converse statement of the above theorem is false. For example;

in above example we show that Z(—l)n+11 IS converges, but the series
n=1
2 nall &1, . :
D I(=D)™=|=> = is divergent (p-series and p =1).
n=1 n n=1
Example:
; < n+l 1.
Prove that the series )" (-1)"" —; is absolutely convergent.
n=1 n
Solution:
all &1
(- =L
n=1 n=1N

o]

Ziz IS convergent because p =2 >1(p-series), then the series
n=1

n+1

>

n=1

(- 1)n+1 > is convergent and so Z( 1)

n=1

— is absolutely convergent.

Definition:

The series )_a, is conditional convergence if the series > a, converges but
n=1 n=1

the series Z\a | diverges.
n=1
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Example:

Prove that the series Z(—l)n+1i Is conditional convergence.

n=1 \/H
Solution:
> (—1)n+1i Z is divergent because p _L <1 (p-series).
n=1 \/H n=1 2

Then the series is not absolutely convergent. Now we discuss the

1
convergence of Y (-)"*——
X0
1
u,=——, n>1
n \/ﬁ

(1) u,’s are all positive

(ii) if f (n)=%:> i (x):%, X >1 = f '(x):—%x%go v x >1

then f (x)is decreasing and so u,, is decreasing.

i) limu, =lim——==
( ) n—o0 n—>oo,\/_
... - X 1
then all three conditions are satisfied and so > (-1)"** —= converges. Then
] Jn
the series Z(—l)n+1i is conditional convergence.

n=1 \/H
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Exercises

State whether the following series absolutely convergence, conditional
convergence or divergent ?

O X @ X0 bre)

® 3 1)"e = @ D

) ?J—l’”‘lm ®) L'
41 ®) i(_i—?)n

©) 3 (-y'nsin? 10 T

38



Power Series

Definition:

A power series about x =0 is a series of the form

[e 0]
>C X" =y +CX +CX P+ H+C X" e (1)
n=0

A power series about x =a is a series of the form
>, (x —a)" o +Cy(X —a) +Cy(X —a)° +-+C (X —a)" +-- (2)

in which the center aand the coefficients c,,c,,c,,...,C,,... are constants.

Remark:

Recall that the Ratio Test applies to series with nonnegative terms.

Example:

For what values of x do the following power series converge ?

o0
(1) X x" =LA X +X 24t X" e
n=0

o n 2 n
(2) g(-%) (x -2)" =1—%(x —2)+(%} (X —2)% +- +(—1J (x =2)" +

_1xn X< x° X

O S e ey

X2n—l XS X5 X7 2n-1

=X ——t+———+-+(=1)"
-1 3 5 7 2n -1

2 n
X X X
(5>Zn|‘“ TR TR

(4) Z( "

(6) Zn!xn =T+UX +2IX 2+ 40X "+
n=0
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Solution:

[o0]
(1) zxn 1+ X X2 4t X" e
n=0

This is geometric series with first term 1 and ratio r = x , then the series converges for

|X <1 = —1<x <1 and its sum izi.

1-r 1-x

= 1Y a1 1Y 1
(2) E})(—E) (x —2) _l—E(x—2)+(§) (X —2)% +- +[——j (x —2)" +

This is geometric series with first term 1 and ratio r = —%(x —2), then the series

converges for <l=[x-2/<2= -2<x-2<2 =0<x <4 and its sum

~Z(x-2)

a 1 3 2 2

1-r 1+1()(_2)_2+(x—2)_x'
(3)2( i -1X - T

Apply the ratio test to the series i\un E i
n=1 n=1

n+1

X

—lim L) = jim |22

nowo| x" n—o0

Xxnj|_
n+1

u,
lim [

n— un

n

The series Z\u \— ( )" ‘1X

=1

X
Py

n=1

Is converges for |x |<1. Then the series

n

x X"
> (-D)" 17 is absolutely convergence for |x |<1.
n=1
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The series Z( 1)" X dlverges for | x |>1, because the condition
] n

n

limX- =2 (limx" =co if [x [»1)

n—o N o0 N—Hw
ox" o x"Inx

© lim—=1lim =0 z0.
n—wo N Nn—0co

If x =1, the alternating series Z(—l)”‘11 converges because it satisfies all three
n=1 n

conditions of the alternating series test.

If x =—1, the series Z( )" -1 r? —Z( 1)2”_1 L —i( D" (- 1)_1 L ——i—

n=1

diverges because, the series Zl diverges (p-series).
n=1 n

n

Then from above the series Z( A converges for —1<x <1.
n=1 n

2n-1 3 5 7 2n-1
X x3 x® x X
4 )t X -t T (D 4
@ Z( A D
| h h ) X2n—1 0 X2n—1
Apply the ratio test to the series > |u_|= -
PPy Zl‘ ‘ =l 2n -1 zl 2n -1
2n+1
2 2
||rnu = |lim Zrtf-:“mm: rnw:)(2
nool U | noeof X n—o| 2N +1 nowo 2N +1
2n -1
X2n—1 0 X2n—1 )
The series Z\u \— ( )"t =y is converges for x? <1 = |x |<1.
=1 2 _1 n=1 2n _1

2n-1
I is absolutely convergence for | x |<1.

Then the series Y (-1 ”‘1;

n=1 n-—
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2n-1
The series Z( 1)" 1; . diverges for x 2 >1 = |x |>1, because the condition
=1 n-—

T — (limx® = if [x [>1)
n—o /N — o0 N—Hw

2n-1 2n-1
X 2)Inx ) _
= L_Ilmxz“lnx —0%0.

n>o2nN —1 n-ow N—>0

If x =1, the alternating series Z(—l)”‘lzil converges because it satisfies all three
n=1 n-—

conditions of the alternating series test.

If x =—1, the series

0

Sy Sy L Sy ey oS s

converges because it satisfies all three conditions of the alternating series test.

0 2n-1
Then from above the series > (-1)"™ converges for —1<x <1.
n=1 -
2 n
X X X
6 3y
© 0 Xn
Apply the ratio test to the series Y |u,|= > |—
n=0 n=0 n!
X n+l
|
lim [2o+L) — fim w =lim|——|= |imM=o for every x .
n—o0 un n—oo| X nooln +1| nowon4+1
n!

n

O SX
Then the series )’ — s absolutely convergence for all x .
n=0 .

(6) S nix" =L+1x +21x %+ +nix" 4o
n=0
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Apply the ratio test to the series " |u,|=
n=0 n=0

(n+Dix "

L= lim
nix"

nN—o0

u,
lim [

n—oo un

X =0.

= Ilm\(n +1)x|= I|m(n +1)| x |=co for every x except

n—o0

Then the series > n!x" diverges for all x except x =0.
n=0

The Radius of Convergence of a Power Series

Theorem:

The convergence of the series > c,(x —a)" is described by one of the following three
n=0

cases:

1- There is a positive number R such that the series diverges for x with |[x —a|>R
but converges absolutely for x with |[x —a|<R . The series may or may not
converge at either of the endpoints x =a—Rand x =a+R..

2- The series converges absolutely for every x (R =o0).

3- The series converges at x =aand diverges elsewhere (R =0).

R is called the radius of convergence of the power series, and the interval of radius R
centered at X =a is called the interval of convergence.

Remark:

The interval of convergence may be open, closed, or half-open, depending on the
particular series. At points x with |x —a|<R, the series converges absolutely. If the
series converges for all values of x , we say its radius of convergence is infinite. If it
converges only at x =a, we say its radius of convergence is zero.

Example:
Find the series’ radius and interval of convergence of the following power series.

- n (3X ) OO()(_Z)H
1) 3 (x+5) (2)2 @) 255 ()Z f3n
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- (X _1)n - (_ " - ny n
(5) nZ:l \/H 6) nz_;) (7) En X
Solution:

(1) 3 (X +5)" =1+ (X +5)+ (X +5)2 + (X +5)2+--

n=0
This is geometric series with first term 1 and ratio r =x +5, then the series converges
for|[x +5<1 (R=1)= -1<x +5<1 = -6<x<-4.

Then the radius R =1and the interval of convergence is -6 <x <-4,

3X -2
@ 3 &2
n
(3x :
Apply the ratio test to the series Z\u |=>
=1 n=1 n
(3X _2)n+1
lim [204L| — [im — N+l jim Gx=2)n ={3x —2| Ilm—_|3x 2|
n—c un n—co (3)( _2) n—o n+1 n-on +1
n
- z|(3x —2)"] . :
The series Y "|u,|= Y |=———" is converges for | 3x —2|<1. Then the series
n=1 n=1 n
0 AL
ZM is absolutely convergence for |3x —2|<1.
n
|3x —2]<1 = |x —g|<1 (R :1) = —1<x —g<1 = 1<x <1.
3 3 3 3 3 3 3
3L 2
00 _ 00 A 00 __n\n o (_1\N
When x :l,theseries ZM:Z 3 :Z(l 2) :Z( D
3 n=1 n n=1 n n=1 n n=1 N
converges .
When x =1, the series Z(X— Z G-2) Z @) Zl
N1 n n n=1 N pal
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diverges .

Then the radius is R :% and the interval of convergence is %gx <1.

©5(x-2)" . (x-2) (x-2° (x-2)°
(3);:0 10" =1 0 107 100

This is geometric series with first term 1 and ratio r = , then the series converges

(x =2
10

for|( )|<1:>|x—2|<10 (R=10) = -10<x -2<10 = -8<x<12.

Then the radius R =10and the interval of convergence is -8 <x <12.

“ Z fs“
© © Xn
Apply the ratio test to the series » U |=
pply Zl\ o nZzln\/;?)n
n+l

tim Ynst| _ fim (n +1)\/n +13" _im xn/n _Ix |Iim nJn
N U | o n>»3(n +1Dy/n+1| 3 oo (n+1)v/n +1

n\/_3n

X n Jn X .. n ) n X
l | lim -lim l | lim <o him —— :u
3 noon+1 noswydn4+1l 3 nown+1 \noen+1 3

The series Z\u \—

n=1 n=1

n

is converges for —— X 3 | <1. Then the series Z

_1n\/_ 3n

n\/_

absolutely convergence for |3 | <l=|xk3 (R=3) = -3<x<3.

When x =-3, the series > X! 3 3 Z( D"Q)" D

_1n\/_3”_nzzln\/53” = nvn 3" _Zln\/_

converges because it satisfies all three conditions of the alternating series test.
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) n )
When x =3, the series > 3 L z ;L/Z is converges

_1n\/_3”_r§1n\/33”_§in N

because p = % >1 (p-series). Then radius is R =3 and the interval of convergence is

—-3<x <3.
& (x =1
()
2
& ((x =1)"
Apply the ratio test to the series Z\u =>
=1 n=1 \/H
(X _1)n+1
im M| i |0 (DN 0
n—o u n—o (X _1) n—o .‘/n +1 n—>oo./n +1
Jn

. n
=[x -1],/lim —— = x -1|
n—xn +1

- @ |(x =1)"
The series > |u,|="
" Jn n\/ 3"

n=1 n=1
is absolutely convergence for |x —1<1 (R=1) = -1<x -1<1 = 0<x <2.

Is converges for |x —1|<1. Then the series Z

. & (x-1)° D" . e
When x =0, the series > => is converges because it satisfies all three

n=1 \/ﬁ n=1 VN

conditions of the alternating series test.

When x =2, the series Z( \/_ 2(2\/_1) Z(l) i L s diverges because
n

n=1 n=1 n=1

p= % <1 (p -series). Then radius is R =1 and the interval of convergence is 0<x < 2.

n

6) 2} (-D)"x
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Apply the ratio test to the series Z\u => ( 1) X" Z
n=0 n=0
Xn+l
I
lim [2042| — Jim (n +nl)' = lim |——|=x | Iimizo for every x .
n—oo un n—o0 X noxoln +1 noon +1
n!

& (D "x" . _—
Then the series ZL is absolutely convergence for all x . Then the radius is
n=0

R =00 and the series converges for all x

7 T n"x"

Apply the ratio test to the series Z\u \_
n=1

(n+D"x " NG +1)(n +1)"x

n
) x| lim(n +1)- lim (n+1)
n X

n—oo n

. |u
lim [t | = |

n—o0 un n—o0 n—>oo

qu | ||m(n +1)- Ilm(n—+1)

=% | lim(n +1)- lim
n—oo n—oo

=[x | lim(n+1)- Iim(1+£)n =[x |-00-e =00 for every x except x =0.
n—o0 n—o0 n

Then the series > n"x " diverges for all x except x =0. Then the radius is R =0 and
n=1

the series converges only for x =0.
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Chapter 1

LINEAR EQUATIONS

1.1 Introduction to linear equations

A linear equation in n unknowns x1, o, -+, Xy is an equation of the form
a1x1 + agxe + -+ - + apx, =0,

where ay, ag,...,ay,, b are given real numbers.

For example, with = and y instead of x1 and zo, the linear equation
2z + 3y = 6 describes the line passing through the points (3, 0) and (0, 2).

Similarly, with z, ¥ and z instead of xi, xo and x3, the linear equa-
tion 2x + 3y + 42 = 12 describes the plane passing through the points
(6,0, 0), (0, 4, 0), (0, 0, 3).

A system of m linear equations in n unknowns x1, xa,- -, T, is a family
of linear equations

a11x¢1 + a12x2 + - + a1pxny, = by
a1 + agre + -+ + agpx, = by
am1%1 + amaT2 + -+ GpnTn, = by

We wish to determine if such a system has a solution, that is to find
out if there exist numbers x1, xs, -+, x,, which satisfy each of the equations
simultaneously. We say that the system is consistent if it has a solution.
Otherwise the system is called inconsistent.

1
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Note that the above system can be written concisely as
n
Zaijxj:bi, i:1,2,--~,m.
j=1

The matrix

ail ai2 e A1n
a1 a2 o A2n
Gml Gm2 " Qmn

is called the coefficient matrixz of the system, while the matrix

a1 a2 -+ aip b1
a1 a2 -+ G2, bo
aml Gm2 *** Gmn bm

is called the augmented matriz of the system.

Geometrically, solving a system of linear equations in two (or three)
unknowns is equivalent to determining whether or not a family of lines (or
planes) has a common point of intersection.

EXAMPLE 1.1.1 Solve the equation
2z + 3y = 6.

Solution. The equation 2z + 3y = 6 is equivalent to 2z = 6 — 3y or
=3 %y, where y is arbitrary. So there are infinitely many solutions.

EXAMPLE 1.1.2 Solve the system

r+y+z =
r—y+z = 0.

Solution. We subtract the second equation from the first, to get 2y = 1
and y = % Thenz =y — z = % — z, where z is arbitrary. Again there are

infinitely many solutions.

EXAMPLE 1.1.3 Find a polynomial of the form y = ag+a12z+asx®+azz?
which passes through the points (-3, —2), (-1, 2), (1, 5), (2, 1).
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Solution. When x has the values —3, —1, 1, 2, then y takes corresponding
values —2, 2, 5, 1 and we get four equations in the unknowns ag, a1, a2, as:

ap — 3a1 +9ag — 27a3 = —2

ap — a1 +ag —as

ap + a1 +as + as
ag + 2a1 +4az +8az =

This system has the unique solution ag = 93/20, a; = 221/120, as =
—23/20,
ag = —41/120. So the required polynomial is

_ 93 221 23, 4l g
Y= 90" 120" 20" T 120"

In [26, pages 33-35] there are examples of systems of linear equations
which arise from simple electrical networks using Kirchhoff’s laws for elec-
trical circuits.

Solving a system consisting of a single linear equation is easy. However if
we are dealing with two or more equations, it is desirable to have a systematic
method of determining if the system is consistent and to find all solutions.

Instead of restricting ourselves to linear equations with rational or real
coefficients, our theory goes over to the more general case where the coef-
ficients belong to an arbitrary field. A field F' is a set F' which possesses
operations of addition and multiplication which satisfy the familiar rules of
rational arithmetic. There are ten basic properties that a field must have:

THE FIELD AXIOMS.
1. (a+b)+c=a+ (b+c¢) forall a, b, cin F;
2. (ab)e = a(be) for all a, b, ¢ in F;
3. a+b=0b+aforall a, bin F}
4. ab = ba for all a, b in F
5. there exists an element 0 in F' such that 0 + a = a for all a in F

6. there exists an element 1 in F' such that 1la = a for all a in F;
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7. to every a in F, there corresponds an additive inverse —a in F', satis-
fying

8. to every non—zero a in F', there corresponds a multiplicative inverse
a~!in F, satisfying
aa b = 1;

9. a(b+c) = ab+ ac for all a, b, ¢ in F}

10. 0 # 1.

With standard definitions such as a — b = a + (—b) and % = ab~! for

b # 0, we have the following familiar rules:

—(a+b) = (—a)+(=b), (ab)'=a"1071;
—(=a) = a, (&) '=a
a b
—(a—b) = b-— ==
(1) a (=2
g_’_g _ad+be
b d bd '’
ac _ ac
bd bd’
b _ b & ac
ac ¢ (g b
—(ab) = (—a)b=a(-b);
_<9> _ *_ @
) b =V
Oa = 0

Fields which have only finitely many elements are of great interest in
many parts of mathematics and its applications, for example to coding the-
ory. It is easy to construct fields containing exactly p elements, where p is
a prime number. First we must explain the idea of modular addition and
modular multiplication. If a is an integer, we define a (mod p) to be the
least remainder on dividing a by p: That is, if a = bp + r, where b and r are
integers and 0 < r < p, then a (mod p) = r.

For example, —1 (mod 2) =1, 3 (mod 3) =0, 5 (mod 3) = 2.
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Then addition and multiplication mod p are defined by

a®b = (a+b)(modp)
a®b = (ab)(modp).

For example, with p = 7, we have 3 @4 = 7(mod7) = 0 and 3 ® 5 =
15(mod 7) = 1. Here are the complete addition and multiplication tables
mod 7:

S

O TR W N = O
o U i w| | =|lo|lo
OO UY x| W DN = =
—| o] o ot x| | M| DO
| —| O o Ot | w| w
W | O o ot kx| i
Wl | | o o ot on
Gl | wl | = ooy o
DU W~ OR
olololololololo
o Ul x| W | = O =
Ul W | o x| | O o
| =] ol | o w| o w
w| || a = ] o
DO | | =] | o o ot
=N w| | oo oo

If we now let Z, = {0, 1,...,p—1}, then it can be proved that Z, forms
a field under the operations of modular addition and multiplication mod p.
For example, the additive inverse of 3 in Zr7 is 4, so we write —3 = 4 when
calculating in Z7. Also the multiplicative inverse of 3 in Z7 is 5 , so we write
37! = 5 when calculating in Z.

In practice, we write a®b and a®b as a+0b and ab or a X b when dealing
with linear equations over Z,,.

The simplest field is Zo, which consists of two elements 0, 1 with addition
satisfying 141 = 0. So in Zy, —1 = 1 and the arithmetic involved in solving
equations over Zs is very simple.

EXAMPLE 1.1.4 Solve the following system over Zo:

r+y+z = 0

r+z =

Solution. We add the first equation to the second to get y = 1. Then = =
1 —z =1+ z, with z arbitrary. Hence the solutions are (z, y, z) = (1, 1, 0)
and (0, 1, 1).

We use Q and R to denote the fields of rational and real numbers, re-
spectively. Unless otherwise stated, the field used will be Q.
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1.2 Solving linear equations

We show how to solve any system of linear equations over an arbitrary field,
using the GAUSS-JORDAN algorithm. We first need to define some terms.

DEFINITION 1.2.1 (Row—echelon form) A matrix is in row—echelon
form if
(i) all zero rows (if any) are at the bottom of the matrix and

(ii) if two successive rows are non-zero, the second row starts with more
zeros than the first (moving from left to right).

For example, the matrix

S = O

[ 0 0
0 0
0 0

0 0

o O O
[an)

is in row—echelon form, whereas the matrix

o O O O
S O = =
o O O O
o O O O

is not in row—echelon form.

The zero matrix of any size is always in row—echelon form.

DEFINITION 1.2.2 (Reduced row—echelon form) A matrix is in re-
duced row—echelon form if

1. it is in row—echelon form,
2. the leading (leftmost non—zero) entry in each non—zero row is 1,

3. all other elements of the column in which the leading entry 1 occurs
are zeros.

For example the matrices

10
[01] and

o O O O
o O o
S O O N
o O = O
o= O O
O = W
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are in reduced row—echelon form, whereas the matrices
100 1 2 0
010 and 010
00 2 0 00

are not in reduced row—echelon form, but are in row—echelon form.
The zero matrix of any size is always in reduced row—echelon form.

Notation. If a matrix is in reduced row—echelon form, it is useful to denote
the column numbers in which the leading entries 1 occur, by c1, co, ..., ¢,
with the remaining column numbers being denoted by ¢y41, ..., ¢y, Where
r is the number of non—zero rows. For example, in the 4 x 6 matrix above,
we haver =3, ¢c1=2,c0o=4,¢c3=5,¢c4 =1, c5 =3, cg = 6.

The following operations are the ones used on systems of linear equations

and do not change the solutions.

DEFINITION 1.2.3 (Elementary row operations) There are three
types of elementary row operations that can be performed on matrices:

1. Interchanging two rows:

R; < R; interchanges rows ¢ and j.

2. Multiplying a row by a non—zero scalar:

R; — tR; multiplies row ¢ by the non—zero scalar t.

3. Adding a multiple of one row to another row:

R; — R; +tR; adds t times row 7 to row j.

DEFINITION 1.2.4 [Row equivalence/Matrix A is row—-equivalent to ma-
trix B if B is obtained from A by a sequence of elementary row operations.

EXAMPLE 1.2.1 Working from left to right,

1 20 1 20

A= |2 11 Ry — Ry + 2R3 4 -1 5
1 -1 2 1 -1 2

1 20 2 40
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Thus A is row—equivalent to B. Clearly B is also row—equivalent to A, by
performing the inverse row—operations R; — %Rl, Ry < R3, Ro — Ro—2R5
on B.

It is not difficult to prove that if A and B are row—equivalent augmented
matrices of two systems of linear equations, then the two systems have the
same solution sets — a solution of the one system is a solution of the other.
For example the systems whose augmented matrices are A and B in the
above example are respectively

r+2y = 0 2x4+4y = 0
2e+y =1 and r—y = 2
r—y = 2 de—y = 5

and these systems have precisely the same solutions.

1.3 The Gauss—Jordan algorithm

We now describe the GAUSS-JORDAN ALGORITHM. This is a process
which starts with a given matrix A and produces a matrix B in reduced row—
echelon form, which is row—equivalent to A. If A is the augmented matrix
of a system of linear equations, then B will be a much simpler matrix than
A from which the consistency or inconsistency of the corresponding system

is immediately apparent and in fact the complete solution of the system can
be read off.

STEP 1.

Find the first non-zero column moving from left to right, (column c;)
and select a non—zero entry from this column. By interchanging rows, if
necessary, ensure that the first entry in this column is non—zero. Multiply
row 1 by the multiplicative inverse of aj., thereby converting a;., to 1. For
each non—zero element a;.,, @ > 1, (if any) in column c¢;, add —a;., times
row 1 to row i, thereby ensuring that all elements in column ¢y, apart from
the first, are zero.

STEP 2. If the matrix obtained at Step 1 has its 2nd, ..., mth rows all
zero, the matrix is in reduced row—echelon form. Otherwise suppose that
the first column which has a non—zero element in the rows below the first is
column cg. Then ¢; < ¢o. By interchanging rows below the first, if necessary,
ensure that ag., is non—zero. Then convert as., to 1 and by adding suitable
multiples of row 2 to the remaing rows, where necessary, ensure that all
remaining elements in column cy are zero.
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The process is repeated and will eventually stop after r steps, either
because we run out of rows, or because we run out of non-zero columns. In
general, the final matrix will be in reduced row—echelon form and will have
r non—zero rows, with leading entries 1 in columns cy, ..., ¢, respectively.

EXAMPLE 1.3.1

00 40 2 2 -2 5
2 2 -2 5| Rie<R [00 40
55 -1 5 55 -1 5
(11 -1 2 11 -1 3
Ri—%iR |0 0 4 0| Rs—R3—5R; |0 0 4 0
55 -1 5 00 4 -1
(11 -1 3 110 3
2 2
Ry—iRy |0 0 1 0 {glzgﬁfj‘f{ 001 0
15 3 3 T 2 15
00 4 b 000 L
110 3 1100
Ry— 2R3 |0 01 0| Ri—Ri—3R; [0 0 1 0
000 1 0001

The last matrix is in reduced row—echelon form.

REMARK 1.3.1 It is possible to show that a given matrix over an ar-
bitrary field is row—equivalent to precisely one matrix which is in reduced
row—echelon form.

A flow—chart for the Gauss—Jordan algorithm, based on [1, page 83] is pre-
sented in figure 1.1 below.

1.4 Systematic solution of linear systems.

Suppose a system of m linear equations in n unknowns z1, - - -, z, has aug-
mented matrix A and that A is row—equivalent to a matrix B which is in
reduced row—echelon form, via the Gauss—Jordan algorithm. Then A and B
are m X (n + 1). Suppose that B has r non—zero rows and that the leading
entry 1 in row ¢ occurs in column number ¢;, for 1 < ¢ < r. Then

1< << -, <. <n+1.
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START
!
Input A, m, n

!
i=1,j=1

Are the elements in the
jth column on and below

the 7th row all zero?

j=j+1

No Yes

Let a,; be the first non-—zero
element in column j on or
below the ith row

Isj=n?

No
Yes
Is p =147
Yes \\NO
Interchange the
pth and ith rows
Divide the ith row by a;;
Subtract a,; times the ith
row from tfle gth row for
forq=1,...,m(q #1)
Set ¢; = j
Yes Print A,
z::'.+11 Isi=m? > Ch--a
1=+ ,I\V }
No - Yes STOP
Is j =n? -

Figure 1.1: Gauss—Jordan algorithm.
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Also assume that the remaining column numbers are ¢,41, -+, Cht1, Where
1< <cga< - <cp <n+1l.
Case 1: ¢, = n+ 1. The system is inconsistent. For the last non—zero
row of B is [0, 0,---, 1] and the corresponding equation is
Ox1 4+ 022+ -4+ 0xy =1,
which has no solutions. Consequently the original system has no solutions.

Case 2: ¢, < n. The system of equations corresponding to the non—zero
rows of B is consistent. First notice that » < n here.

Ifr=n,thenci=1,¢c0=2, -+, ¢,, =n and
(1 0 -+ 0 d; ]
1 -+ 0 dy
B=]10 0 1 d,
0o 0 - 0
00 -~ 0 0 |
There is a unique solution x1 = dy, x9 = ds, -+, T, = dj.

If r < n, there will be more than one solution (infinitely many if the
field is infinite). For all solutions are obtained by taking the unknowns
Teys * 0 T, as dependent unknowns and using the r equations correspond-
ing to the non—zero rows of B to express these unknowns in terms of the
remaining independent unknowns ¢, ..., T¢,, which can take on arbi-
trary values:

Loy = bl n+1 — blcr+1$cr+1 — blcnvzcn
L, = by n+l — brcr+1xcr+1 — = brcnxcn-
In particular, taking z..., = 0,...,2., , = 0 and z., = 0, 1 respectively,

produces at least two solutions.
EXAMPLE 1.4.1 Solve the system
r+y = 0

r—y
dr +2y = 1.

I
—
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Solution. The augmented matrix of the system is

1 0
A=11 -1 1
4 1
which is row equivalent to
10 3
B=[0 1 —3
00 O
We read off the unique solution x = %, y= —%.

(Here n = 2,7 =2,¢1 = 1,0 =2. Alsoc, =3 =2<3=n+1 and
r=n.)

EXAMPLE 1.4.2 Solve the system

2x1 4+ 219 — 223 = 5
Trx1+ T7xe+2x3 = 10
521+ dxro —x3 = b.

Solution. The augmented matrix is

2 2 -2 5
A=|7 7 1 10
5 5 —1 5
which is row equivalent to
1100
B={0 010
00 01

We read off inconsistency for the original system.
(Heren=3,r=3,c1=1,c0=3. Also¢, =cg=4=n+1.)

EXAMPLE 1.4.3 Solve the system

Tr1 — T2 + T3
T1+x9—23 = 2.
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Solution. The augmented matrix is

1 -1 11
A:L 1 -1 2]

|

which is row equivalent to

B

@)
—_
|
—_
[N NGl [IV]

The complete solution is x; = % To = % + x3, with z3 arbitrary.

13

(Here n = 3,7 =2,¢1 = 1,0 =2. Alsoc, =3 =2<4=mn+1 and

r<n.)

EXAMPLE 1.4.4 Solve the system

6x3 + 24 — 4dxs — 8xg =

3x3 + x4 — 25 — 4

211 — 3xo + x3 + 4y — T25 + 26
6x1 — 929 + 11xy — 1925 + 326 =

Il
I U

Solution. The augmented matrix is

0 06 2 —4 -8 8

A 0O 03 1 -2 —4 4

12 =31 4 -7 1 2

6 -9 0 11 -19 3 1

which is row equivalent to

3 11 19 1

b bp % %

B 0 01 53 -5 0 3

0 00 O 01 4

0 00 O 00 O

The complete solution is
T1 = 51 + smo — Hay + Pas,
T3 = % - %u + %585,
ro =1,

with xo, x4, x5 arbitrary.

(Heren=6,r=3,c1=1,c0=3,¢c3=6;¢, =c3=6<7=n+1; r <n.)
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EXAMPLE 1.4.5 Find the rational number ¢ for which the following sys-
tem is consistent and solve the system for this value of ¢.

Tty
T—y =
3xr—y =

Solution. The augmented matrix of the system is

1 1 2
A=1]1 -1 0
3 -1 ¢

Hence if t # 2 the system is inconsistent. If ¢ = 2 the system is consistent
and

O =
O = O
O =

We read off the solution z =1, y = 1.

EXAMPLE 1.4.6 For which rationals a and b does the following system
have (i) no solution, (ii) a unique solution, (iii) infinitely many solutions?

x—2y+ 3z 4
20 —-3y+az = 5
3z —4y+5z = b.

Solution. The augmented matrix of the system is

1 -2 3 4
A=|[2 -3 a 5
3 —4 5 b
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R, — R, — 2R, 1 -2 3 4
Ry — R3 — 3R 0 Lamb 3
3 3 ! 0 2 -4 b—12

1 -2 3 4

R3—>R3—2R2 0 1 a—©6 -3 = B.
0 0 —2a+8 b—6

Case 1. a # 4. Then —2a + 8 # 0 and we see that B can be reduced to
a matrix of the form
U
v
b—6
—2a+8

1 00
010
0 01

and we have the unique solution z = u, y = v, z = (b —6)/(—2a + 8).

Case 2. a = 4. Then

1 -2 3 4
B=|0 1 -2 -3
0 0 0 b-6

If b # 6 we get no solution, whereas if b = 6 then

1 -2 3 4 10 -1 -2
B=]10 1 -2 -3 Ry — R1 + 2Ry 01 -2 =3 |. We
0o 0 0 O 00 0 0

read off the complete solution x = —2 + z, y = —3 + 2z, with z arbitrary.

EXAMPLE 1.4.7 Find the reduced row—echelon form of the following ma-
trix over Zs:

21 2 1

2 21 0|
Hence solve the system

2r+y+2z =
20 +2y+2 = 0

over Zs3.

Solution.
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[2121} Ry — Ry — Ry [21 2 1]:[2121]

2 210 01 -1 -1 01 2 2
1 2 1 2 1 0 0 1

The last matrix is in reduced row—echelon form.

To solve the system of equations whose augmented matrix is the given
matrix over Zs, we see from the reduced row—echelon form that x = 1 and
Yy =2—2z =2+ z, where z = 0, 1, 2. Hence there are three solutions
to the given system of linear equations: (z, y, z) = (1, 2, 0), (1, 0, 1) and
(1,1, 2).

1.5 Homogeneous systems

A system of homogeneous linear equations is a system of the form

a1121 +axa + - +apxr, = 0
azix1 + agnrs+ - +awmr, = 0
Am1T1 + AmaT2 + - + GpnTn, = 0.
Such a system is always consistent as 1 = 0, ---, x, = 0 is a solution.

This solution is called the trivial solution. Any other solution is called a
non—trivial solution.
For example the homogeneous system
T—-Y
Tty =

has only the trivial solution, whereas the homogeneous system

r—y+z = 0

r+y+z = 0
has the complete solution x = —z, y = 0, 2z arbitrary. In particular, taking
z =1 gives the non-trivial solution x = -1, y =0, z = 1.

There is simple but fundamental theorem concerning homogeneous sys-
tems.

THEOREM 1.5.1 A homogeneous system of m linear equations in n un-
knowns always has a non—trivial solution if m < n.
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Proof. Suppose that m < n and that the coefficient matrix of the system
is row—equivalent to B, a matrix in reduced row—echelon form. Let r be the
number of non—zero rows in B. Then »r < m < n and hence n — r > 0 and
so the number n — r of arbitrary unknowns is in fact positive. Taking one
of these unknowns to be 1 gives a non—trivial solution.

REMARK 1.5.1 Let two systems of homogeneous equations in n un-
knowns have coefficient matrices A and B, respectively. If each row of B is
a linear combination of the rows of A (i.e. a sum of multiples of the rows
of A) and each row of A is a linear combination of the rows of B, then it is
easy to prove that the two systems have identical solutions. The converse is
true, but is not easy to prove. Similarly if A and B have the same reduced
row—echelon form, apart from possibly zero rows, then the two systems have
identical solutions and conversely.

There is a similar situation in the case of two systems of linear equations
(not necessarily homogeneous), with the proviso that in the statement of
the converse, the extra condition that both the systems are consistent, is
needed.

1.6 PROBLEMS

1. Which of the following matrices of rationals is in reduced row—echelon
form?

1000 -3 010 0 5 010 0
()| 0010 4| (M)|001 0 —4| (|001 o0
0001 2 000 -1 3 01 0 =2
[0 1 0 0 2] 1 20 00 00 00
0000 -1 00100 00 1 2
Dloo0o01 4| @Dloooo1| Dlooo
(0000 O] 00000 0000

1.0 0 0 1]

0100 2
() 000 1 -1 . [Answers: (a), (e), (g)]
(0000 0

2. Find reduced row—echelon forms which are row—equivalent to the following
matrices:

111 2 00
@lsio] @1y i] @il @) 0o



18 CHAPTER 1. LINEAR EQUATIONS

[Answers:
1 00 1 00
(a)[égg} (b)[éa’_;] @lo 1ol @|oool]
0 01 0 00
3. Solve the following systems of linear equations by reducing the augmented

matrix to reduced row—echelon form:

(a) r+y+z = 2 (b) x1+x2—x3+2x4 = 10
20+ 3y — 2z = 8 3v1 —xo+Txs+4ry = 1
r—y—z = -8 —5x1 + 3x2 — 1523 — 624 =
(c) 3r—y+72 = 0 (d) 229 +3x3 —4xy = 1
20 —y+4z = 1 203+3x4 = 4
r—y+z = 1 2x1 +2x0 — bx3+22x4 = 4
6x —4y + 10z = 3 201 —6x34+9x4 = 7
[Answers: (a) z=-3,y="1, 2=1 (b) inconsistent;
(c) x = —3 — 32, y = —3 — 22, with z arbitrary;
(d) z — 93y, Ty = —2 + 17374, T3 =2 — 2x4, with x4 arbitrary.]

4. Show that the following system is consistent if and only if ¢ = 2a — 3b
and solve the system in this case.

2r—y+32 = a
3r+y—52z = b
-5 —o5y+21z = c
[Answer: z = 92 4 27 oy = =30420 4 19, with 2 arbitrary.]

5. Find the value of ¢ for which the following system is consistent and solve
the system for this value of t.

z+y = 1
tr+y = t
1+t)x+2y = 3.

[Answer: t =2,z =1,y =0]
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6. Solve the homogeneous system

—3z1+x2+T3+T4 =
r1 —3ra+x3+2x4 =
T1+x9—3r3+ 234 =

o o o o

r1+ax2+23—314 =

[Answer: z1 = x9 = x3 = x4, with x4 arbitrary.]
7. For which rational numbers A does the homogeneous system

r+AN=3)y =
A=3)z+y =

have a non—trivial solution?
[Answer: A = 2, 4.]

8. Solve the homogeneous system

3r1+x0+x3+24 = 0
51 —xo+ax3—24 = 0.
[Answer: x; = —%azg, Ty = —img — x4, with z3 and x4 arbitrary.]

9. Let A be the coefficient matrix of the following homogeneous system of
n equations in n unknowns:

1-—n)zi+a2+--+x, =
ri+(1-—n)zo+--+z, =

o o o o

T +z2+--+(1-n)z, =

Find the reduced row—echelon form of A and hence, or otherwise, prove that
the solution of the above system is x1 = 29 = - - - = x,,, with x,, arbitrary.

a b

10. Let A = [ e d ] be a matrix over a field F'. Prove that A is row—

equivalent to [ ] if ad — bc # 0, but is row—equivalent to a matrix

0 1
whose second row is zero, if ad — bc = 0.
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11. For which rational numbers a does the following system have (i) no
solutions (ii) exactly one solution (iii) infinitely many solutions?

r+2y—3z = 4
3z —y+952z = 2
dr+y+(a®>—14)z = a+2.
[Answer: a = —4, no solution; a = 4, infinitely many solutions; a # 44,

exactly one solution.]
12. Solve the following system of homogeneous equations over Zo:
T1t+x3+a5 =

Tot+ Ty +a5 =

T+ x2+x3+ T4 =

o o o o

r3+Tg4 =

[Answer: 1 = x9 = x4 + x5, 3 = x4, With x4 and x5 arbitrary elements of
Zo.]

13. Solve the following systems of linear equations over Zs:

(a) 2e0+y+32z = 4 ) 2x+y+3z =
de+y+42 = 1 de+y+4z = 1
d3x+y+2z = 0 x+y = 3.

[Answer: (a) x =1,y =2,2=0; (b) 2 =1+ 22,y = 2+ 3z, with z an
arbitrary element of Zs.]

14. If (v, ..., ) and (B4, ..., B,) are solutions of a system of linear equa-
tions, prove that

(1=t +tB1, ..., (1 —t)an +t6)

is also a solution.

15. If (aq,...,qp) is a solution of a system of linear equations, prove that
the complete solution is given by 1 = a1 + y1,...,Tn = @n + Yn, Where
(Y1, ..., Yn) is the general solution of the associated homogeneous system.
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16. Find the values of a and b for which the following system is consistent.
Also find the complete solution when a = b = 2.

rt+y—z
ar+y+ =z
3z + 2y +

+w = 1
+w = b
aw = 1+4a.

[Answer: a #2ora=2=b;x =1— 2z, y = 3z — w, with z, w arbitrary.]

17. Let F ={0, 1, a, b} be a field consisting of 4 elements.

(a) Determine the addition and multiplication tables of F. (Hint: Prove
that the elements 14+0, 1+ 1, 14+ a, 1+ b are distinct and deduce that
1+ 1414 1=0; then deduce that 1+ 1=0.)

(b) A matrix A, whose elements belong to F, is defined by

A=

prove that the reduced row—e

B =

(1 b
a b
|1 1

— o
QL =

chelon form of

o O =
o = O

0
0
1

_ o O

A is given by the matrix
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Chapter 2

MATRICES

2.1 Matrix arithmetic

A matrix over a field F' is a rectangular array of elements from F'. The sym-
bol M, xn(F') denotes the collection of all m x n matrices over F'. Matrices
will usually be denoted by capital letters and the equation A = [a;;] means
that the element in the i—th row and j—th column of the matrix A equals
a;j. It is also occasionally convenient to write a;; = (A);j. For the present,
all matrices will have rational entries, unless otherwise stated.

EXAMPLE 2.1.1 The formula a;; = 1/(i+j) for 1 <i<3,1<5<4
defines a 3 x 4 matrix A = [a;;], namely

1111
2 3 4 5
_ 111
A_3456
111l
4 5 6 7

DEFINITION 2.1.1 (Equality of matrices) Matrices A and B are said
to be equal if A and B have the same size and corresponding elements are
equal; that is A and B € Mp,xn(F) and A = [a;], B = [by;], with a;; = by;
for1<i<m,1<j<n.

DEFINITION 2.1.2 (Addition of matrices) Let A = [a;;] and B =
[bij] be of the same size. Then A + B is the matrix obtained by adding
corresponding elements of A and B; that is

A+ B = [aig] + [big] = [aij + bij].

23
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DEFINITION 2.1.3 (Scalar multiple of a matrix) Let A = [a;;] and
t € F (that is t is a scalar). Then tA is the matrix obtained by multiplying
all elements of A by ¢; that is

tA = t[aij] = [taij].

DEFINITION 2.1.4 (Additive inverse of a matrix) Let A = [a;;] .
Then —A is the matrix obtained by replacing the elements of A by their
additive inverses; that is

—A = —lay] = [-ai].

DEFINITION 2.1.5 (Subtraction of matrices) Matrix subtraction is
defined for two matrices A = [a;;] and B = [b;;] of the same size, in the
usual way; that is

A — B = [ag] — [bis] = [aij — bij].

DEFINITION 2.1.6 (The zero matrix) For each m, n the matrix in
M,sn(F), all of whose elements are zero, is called the zero matrix (of size
m x n) and is denoted by the symbol 0.

The matrix operations of addition, scalar multiplication, additive inverse
and subtraction satisfy the usual laws of arithmetic. (In what follows, s and
t will be arbitrary scalars and A, B, C' are matrices of the same size.)

1. (A+B)+C=A+ (B+C);
2. A+ B= B+ A;

3. 0+ A=A4

4. A+ (—A) =0;

5. (s+t)A=sA+tA, (s—t)A=sA—tA
6. t(A+ B)=tA+tB, t(A—B)=tA—tB;
7. s(tA) = (st)A;

8. 1A=A4, 0A=0, (-1)A=-A4;
9.tA=0=t=00r A=0.

Other similar properties will be used when needed.
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DEFINITION 2.1.7 (Matrix product) Let A = [a;;] be a matrix of
size m x n and B = [bj;] be a matrix of size n x p; (that is the number
of columns of A equals the number of rows of B). Then AB is the m x p
matrix C' = [¢;x] whose (i, k)-th element is defined by the formula

n
Cik, = § a;jbjr = aj1big + -+ + ainbpg.
j=1

EXAMPLE 2.1.2

L[ 2[5 6] _[1x5+2x7 1x6+2x871 _[19 22
13 4|7 8] | 3x5+4xT7 3x6+4x8 ] |43 50 |’
2'56 12_2334#12 5 6.

|7 8|3 4 |31 46 347 8]

3. -H[s 4]:[2 g};

(3 a)| ] =11l

=R

Matrix multiplication obeys many of the familiar laws of arithmetic apart
from the commutative law.

1. (AB)C = A(BC) it A, B, C are m X n, n X p, p X q, respectively;
2. t(AB) = (tA)B = A(tB), A(—B)=(—A)B=—(AB);

3. (A+B)C = AC + BC if A and B are m x n and C'is n X p;

4. D(A+ B)=DA+ DB if A and B are m x n and D is p X m.

e

ot

We prove the associative law only:
First observe that (AB)C and A(BC') are both of size m x gq.
Let A= [aij], B= [bjk], C = [Ckl]' Then

n

p
(AB)ixcr = Z Z a;jbjk | cr

k=1 \j=1

((AB)C); =

M=

i
I

n

aijbjrcr-
j

1j=1

I
M=

T
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Similarly
n p

(A(BC))y =YY aijbjrcn.

j=1k=1
However the double summations are equal. For sums of the form

n p P n
Y3 dip and DY dy
j=1k=1 k=1j=1

represent the sum of the np elements of the rectangular array [d;i], by rows
and by columns, respectively. Consequently

(AB)C)y = (A(BC))y
for 1 <i<m,1<1<gq. Hence (AB)C = A(BC).

The system of m linear equations in n unknowns

a1z + appxe + -+ apxr, = b
9171 + agexo + -+ + agpTy = bo
Am121 + AmaX2 + -+ AmpTn = bm

is equivalent to a single matrix equation

air a2 - Qlp 1 b1
a1 a2 -+ a2, ) bo

— )
Aml Am2 - (mn Tn bm

that is AX = B, where A = [a;;] is the coefficient matriz of the system,

I bl
xTo b2

X = . is the vector of unknowns and B = . is the vector of
Ip bm

constants.

Another useful matrix equation equivalent to the above system of linear
equations is

an a2 a1n b1
as1 a22 a2p by

am1 Am2 Gmn bm
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EXAMPLE 2.1.3 The system

rT+y+z =
r—y+z = 0.

is equivalent to the matrix equation

111 T
1 11|77 |o
z
and to the equation

R b

2.2 Linear transformations

An n—dimensional column vector is an n x 1 matrix over F'. The collection
of all n—dimensional column vectors is denoted by F™.

Every matrix is associated with an important type of function called a
linear transformation.

DEFINITION 2.2.1 (Linear transformation) With A € M, (F), we
associate the function Ty : F" — F™ defined by T4(X) = AX for all
X € F"™. More explicitly, using components, the above function takes the
form

Y1 = a11%1+a12T2 + -+ ainTy
Y2 = 211+ a2 + -+ Gy
Yn = Gm1T1+ am2T2 +  + Gmnon,
where y1, Y2, -, ym are the components of the column vector T4 (X).

The function just defined has the property that
TaA(sX +tY) = sTa(X) +tTy(Y) (2.1)
for all s, t € F' and all n—dimensional column vectors X, Y. For

Tu(sX +1Y) = A(sX +1Y) = s(AX) + t(AY) = sTu(X) + tTa(Y).
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REMARK 2.2.1 It is easy to prove that if T : F” — F™ is a function
satisfying equation 2.1, then T = T4, where A is the m X n matrix whose
columns are T(E1),...,T(E,), respectively, where Ei,..., E, are the n—
dimensional unit vectors defined by

1 0
0 0
Bi=| .|, ...  E,=
0 1

One well-known example of a linear transformation arises from rotating
the (z, y)-plane in 2-dimensional Euclidean space, anticlockwise through 6
radians. Here a point (x, y) will be transformed into the point (x1, y1),
where

r1 = wxcos —ysinb

y1 = xsinf + ycosh.

In 3-dimensional Euclidean space, the equations

x1 =xcosf —ysinf, y; =xsinf +ycosh, z; = z;
Tl =, Yy =ycoso — zsing, z; = ysin ¢ + z cos ¢;

r1 =xcosy — zsiny, y1 =y, 21 = xrsiny + zcosy;

correspond to rotations about the positive z, x, y—axes, anticlockwise through
0, ¢, ¢ radians, respectively.

The product of two matrices is related to the product of the correspond-
ing linear transformations:

If Ais mxn and B is nXxp, then the function Ty7Tp : F? — F™, obtained
by first performing Tg, then T4 is in fact equal to the linear transformation
Tap. For if X € FP, we have

TyTp(X) = A(BX) = (AB)X = Txp(X).

The following example is useful for producing rotations in 3-dimensional
animated design. (See [27, pages 97-112].)

EXAMPLE 2.2.1 The linear transformation resulting from successively
rotating 3—dimensional space about the positive z, x, y—axes, anticlockwise
through 6, ¢, ¥ radians respectively, is equal to T'4pc, where
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l
($1 ) yl)
0
Figure 2.1: Reflection in a line.
[ cosf® —sinf 0 1 0 0
C=| sinf cos® 0|, B=|0 cos¢p —sing
| 0 0 1 0 sing cos¢
cosyp 0 —siny
A= 0 1 0
| siny 0 cos
The matrix ABC' is quite complicated:
cosyp 0 —sinvy cos 6 —sind 0
A(BC) = 0 1 0 cospsinf cospcosf —sing
sinyy 0 cosvy singsinf singcosf cos¢
coscos —sinysingsind —cosysinf —sinysingsinf  —sin cos @
= cos ¢ sin 6 cos ¢ cos 0 —sin¢

sin cosf + cosypsingsinf —sinsind + cosysinpcosf  cospcos

EXAMPLE 2.2.2 Another example of a linear transformation arising from
geometry is reflection of the plane in a line [ inclined at an angle 6 to the
positive z—axis.

We reduce the problem to the simpler case 8§ = 0, where the equations
of transformation are x1 = z, y; = —y. First rotate the plane clockwise
through 0 radians, thereby taking [ into the x—axis; next reflect the plane in
the z—axis; then rotate the plane anticlockwise through 6 radians, thereby
restoring [ to its original position.
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(71,91)

Figure 2.2: Projection on a line.

In terms of matrices, we get transformation equations

R e (| e sty | by
[ cosf smeH cos 0 sm&}[w}

sinf —cos6 —sinf cosf Y

- [ cos 26 sin 260 T
sin20 — cos 260 y |

The more general transformation

T cos —sinf T U
=a . + , a>0,
Y1 sin 6 cos 6 Y v
represents a rotation, followed by a scaling and then by a translation. Such
transformations are important in computer graphics. See [23, 24].

EXAMPLE 2.2.3 Our last example of a geometrical linear transformation
arises from projecting the plane onto a line [ through the origin, inclined
at angle 6 to the positive x—axis. Again we reduce that problem to the
simpler case where [ is the z—axis and the equations of transformation are
r1=x,y =0.

In terms of matrices, we get transformation equations

I B | A e
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_ cosf O cosf sind z
N sinf 0 —sinf cosf y
[ cos?26 cosfsind ] [z ]

sin @ cos sin? 0 Y

2.3 Recurrence relations

DEFINITION 2.3.1 (The identity matrix) The n x n matrix [,, =
[0i5], defined by d;; = 1if i = j, §;; = 0 if i # j, is called the n x n identity
matrix of order n. In other words, the columns of the identity matrix of
order n are the unit vectors Fy, - - -, E,, respectively.

For example, Is = [ (1) (1) ]

THEOREM 2.3.1 If A is m x n, then I,,A= A= Al,.

DEFINITION 2.3.2 (k—th power of a matrix) If A is an nxn matrix,
we define A* recursively as follows: A® = I,, and A**1 = A*A for k > 0.

For example A' = AYA =1,A = A and hence A% = A'A = AA.
The usual index laws hold provided AB = BA:
1. AMA™ = AmHn (A = AT,
2. (AB)" = A"B™,
3. AmB™ = B"A™;

4. (A+ B)? = A2 + 2AB + B?;

5. (A+B)" =Y (NA'B";
=0

6. (A+ B)(A—- B) = A?- B2
We now state a basic property of the natural numbers.

AXIOM 2.3.1 (PRINCIPLE OF MATHEMATICAL INDUCTION)

If for each n > 1, P, denotes a mathematical statement and

(i) P is true,
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(ii) the truth of P, implies that of Pny1 for each n > 1,

then P, is true for all mn > 1.

EXAMPLE 2.3.1 Let A = [ _g _;l ] . Prove that
1+ 6n 4n .
n
— > 1.
A [ _on, 1—671] itfn>1

Solution. We use the principle of mathematical induction.
Take P, to be the statement

An:[l—i—Gn 4n }

—-9n 1-—6n

Then P; asserts that

Al 1+6x1 4x1 _ 7T 4
| -9x1 1-6x1]| | -9 =5 |’

which is true. Now let n > 1 and assume that P, is true. We have to deduce
that

ne1 | 14+6(n+1)  4(n+1)
AH—{ —9(n+1) 1—6(n—|—1)]

7+ 6n dn + 4
-9n—-9 —-5—-6n |’

Now

An—i—l — ‘flnA
1+6n  4n 7T 4
A | B
(14+6n)7+ (4n)(-9) (1 +6n)4+ (4n)(—5)
L (—9n)7T+ (1 —6n)(—9) (—9In)4+ (1 —6n)(=5)
[ 7+6n  4An+4 ]
| - -9 —5-6n |’

and “the induction goes through”.

The last example has an application to the solution of a system of re-
currence relations:
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EXAMPLE 2.3.2 The following system of recurrence relations holds for
all n > 0:

Tnt1 = TTp+4yn
Yn+l = —9Zn — dYn.

Solve the system for x, and v, in terms of xy and yp.

Solution. Combine the above equations into a single matrix equation

R

7 4 Tn,
or X1 =AX,, where A = [ 9 _5 } and X, = [ " }
We see that

X, = AX,

X, = AX; = A(AXy) = A%X,

X, = A"X,.

(The truth of the equation X,, = A"Xy for n > 1, strictly speaking

follows by mathematical induction; however for simple cases such as the
above, it is customary to omit the strict proof and supply instead a few
lines of motivation for the inductive statement.)

Hence the previous example gives

R R
_ (1 +6n)zo + (4n)yo
o e ]

and hence z,, = (14 6n)zo+4nyo and y, = (—9In)xo+ (1 —6n)yo, for n > 1.

2.4 PROBLEMS

1. Let A, B, C, D be matrices defined by

[E—

3
A=| -1 , B=| -
1

= O
|
S
— = ot
w O N
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-3 -1
C = 2 1 ,D:[;l _(1]].
4 3

Which of the following matrices are defined? Compute those matrices
which are defined.

A+ B, A+ C, AB, BA, CD, DC, D?.

[Answers: A+ C, BA, CD, D?;

0 —1 0 12 —14 3
1 31, -4 2|, 10 -2 |, [1;1 :;L].]
) 4 —10 5 22 —4
-1 0 1 . .
. Let A= 01 1l Show that if B is a 3 x 2 such that AB = I,
then

a b

B=| —-a-1 1-5b
a+1 b

for suitable numbers a¢ and b. Use the associative law to show that
(BA)QB = B.

CIfA= {i 2],provethat A? — (a+d)A+ (ad — be)I, = 0.

4

LI A= { -3 ], use the fact A2 = 4A — 31, and mathematical

1 0
induction, to prove that
(3" —1) 3-—-3"

A" = A I, ifn>1.
5 + 5 2 UnNn=>

. A sequence of numbers 1, xa,..., Ty, ... satisfies the recurrence rela-

tion xp41 = axy +bx,—1 for n > 1, where a and b are constants. Prove
that
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where A = | ¢ b and hence express Tl i terms of | !
1 0 Tn g
If a = 4 and b = —3, use the previous question to find a formula for
T, in terms of x1 and xg.
[Answer:
3" -1 . 3-—3" ]
Ty = x x
n 2 1 2 0
2a —a?
6. Let A= [ 1 0 ]
(a) Prove that
n (n+1a® —na™*! .
= > 1.
A { na® 1 (1 —n)a" ifn=1
(b) A sequence xg, x1,..., Ty, ...satisfies the recurrence relation x,; =

2ax,, — a’z,_1 for n > 1. Use part (a) and the previous question
to prove that x,, = na" tx; + (1 — n)a"xg for n > 1.

a
7.LetA—[c d

quadratic polynomial 22 — (a+d)x+ad—be. (A1 and Ay may be equal.)
Let k,, be defined by kg =0, k1 = 1 and for n > 2

b ] and suppose that A1 and Ao are the roots of the

kep, = iw”x;l.

Prove that
kni1 = (A1 4+ A2)kn — Mok, 1,

if n > 1. Also prove that

e T =29)/ (A = Xa) i A # g,
" APt if \; = Ao

Use mathematical induction to prove that if n > 1,
A" = kA — M Aokn—11s,

[Hint: Use the equation A% = (a + d)A — (ad — be)I5.]



36 CHAPTER 2. MATRICES

8. Use Question 6 to prove that if A = [ ; ? ], then
311 (-)" ' -1 1
=7 { 11 } T 1 -1

ifn>1.

9. The Fibonacci numbers are defined by the equations Fy = 0, F; = 1
and Fpy1 = F, + F,—1 if n > 1. Prove that

() (57)

10. Let » > 1 be an integer. Let a and b be arbitrary positive integers.
Sequences x,, and ¥, of positive integers are defined in terms of a and
b by the recurrence relations

if n>0.

Tptl = Tp+TYn

Yntl = Tp+ Yn,

for n > 0, where zg = a and yg = b.
Use Question 6 to prove that

Tn
—_— T as n — oQ.
Yn

2.5 Non-—singular matrices

DEFINITION 2.5.1 (Non—singular matrix)

A square matrix A € M,x,(F) is called non-singular or invertible if
there exists a matrix B € My, (F) such that

AB =1, = BA.

Any matrix B with the above property is called an inverse of A. If A does
not have an inverse, A is called singular.



2.5. NON-SINGULAR MATRICES 37

THEOREM 2.5.1 (Inverses are unique)

If A has inverses B and C', then B = C.

Proof. Let B and C be inverses of A. Then AB = I,, = BA and AC =
I, = CA. Then B(AC) = BI,, = B and (BA)C = I,,C = C. Hence because
B(AC) = (BA)C, we deduce that B = C.

REMARK 2.5.1 If A has an inverse, it is denoted by A~!. So
AAT =1, =471A
Also if A is non-singular, it follows that A~! is also non-singular and
(A H™t=A.

THEOREM 2.5.2 If A and B are non—singular matrices of the same size,
then so is AB. Moreover

(AB)"'=pB7tA™l
Proof.
(AB)(B'A™Y) = A(BB YA ' = AL A7 = AA™ = I,,.

Similarly
(BTYA™Y(AB) = I,.

REMARK 2.5.2 The above result generalizes to a product of m non—
singular matrices: If Aq,..., A, are non—singular n X n matrices, then the
product Aj ... A,, is also non-singular. Moreover

(Ay... An) b =A 0 AT

(Thus the inverse of the product equals the product of the inverses in the
reverse order.)

EXAMPLE 2.5.1 If A and B are n x n matrices satisfying A> = B? =
(AB)? = I,,, prove that AB = BA.

Solution. Assume A% = B? = (AB)? = I,,. Then A, B, AB are non—
singular and A~! = A, B~ = B, (AB)~! = AB.
But (AB)™! = B~!A~! and hence AB = BA.
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EXAMPLE 2.5.2 A = le ; } is singular. For suppose B = [ Z Z ]

is an inverse of A. Then the equation AB = I, gives

el a]=lot)

and equating the corresponding elements of column 1 of both sides gives the
System

a-+2c =
da+8 = 0

which is clearly inconsistent.

THEOREM 2.5.3 Let A = [ Z Z ] and A = ad — be # 0. Then A is
non—singular. Also
Alop-r| 4
—c a |
REMARK 2.5.3 The expression ad — bc is called the determinant of A
and is denoted by the symbols det A or ¢ Z

d

Proof. Verify that the matrix B = A~} [
AB = I, = BA.

—b . :
a } satisfies the equation

EXAMPLE 2.5.3 Let

A=

ot O O
S O =
O = O

Verify that A3 = 515, deduce that A is non-singular and find A~

Solution. After verifying that A% = 513, we notice that

Al =I5 = 1a2) 4.
5 5

Hence A is non-singular and A~! = %AQ.
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THEOREM 2.5.4 If the coefficient matrix A of a system of n equations

in n unknowns is non-singular, then the system AX =

solution X = A~ 'B.
Proof. Assume that A~ exists.

1. (Uniqueness.) Assume that AX = B. Then

(A71A)X = A7'B,
I,X = A'B,
X = A'B.

2. (Existence.) Let X = A~'B. Then

AX

A(ATIB) =
THEOREM 2.5.5 (Cramer’s rule for 2 equations
The system

ax + by
cr + dy

e
f

has a unique solution if A =

a b
. d‘;é(), namely

where

‘ and Ag =

a
C

e
f

Proof. Suppose A # 0. Then A = [ Z 2

-

} has inverse

"

ATt =A"1

. ]

and we know that the system

4|

B has the unique

(AA"HYB =1,B = B.

in 2 unknowns)
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has the unique solution
x| _ a1 e _ 1 d —b e
] f Al —c a f
1

Hence © = A1 /A, y = Ag/A.
COROLLARY 2.5.1 The homogeneous system

ar+by = 0
cx+dy = 0

has only the trivial solution if A = ‘ (cl 2 ‘ #0.

EXAMPLE 2.5.4 The system

Tr+8y = 100
20 =9y = 10

has the unique solution z = A; /A, y = Ag/A, where

100 8

0 o = —130.

7 8
a-|;

I ’:—79,A1:‘

’:-980,@:‘ 7 100‘

2 10

__ 980 _ 130
Sox—ﬁandy—?g.

THEOREM 2.5.6 Let A be a square matrix. If A is non-singular, the
homogeneous system AX = 0 has only the trivial solution. Equivalently,
if the homogenous system AX = 0 has a non—trivial solution, then A is
singular.

Proof. If A is non-singular and AX = 0, then X = A~10 = 0.

REMARK 2.5.4 If A,q,..., A, denote the columns of A, then the equa-
tion
AX = 2140+ ...+ A0

holds. Consequently theorem 2.5.6 tells us that if there exist scalars x1, ..., Ty,
not all zero, such that

T1Am + ...+ 1A =0,
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that is, if the columns of A are linearly dependent, then A is singular. An
equivalent way of saying that the columns of A are linearly dependent is that
one of the columns of A is expressible as a sum of certain scalar multiples
of the remaining columns of A; that is one column is a linear combination
of the remaining columns.

EXAMPLE 2.5.5

1 2 3
A=11 0 1
3 47
is singular. For it can be verified that A has reduced row—echelon form
1 01
0 1 1
0 00
and consequently AX = 0 has a non—trivial solution z = -1, y = -1, z = 1.

REMARK 2.5.5 More generally, if A is row—equivalent to a matrix con-
taining a zero row, then A is singular. For then the homogeneous system
AX =0 has a non—trivial solution.

An important class of non—singular matrices is that of the elementary
row matrices.

DEFINITION 2.5.2 (Elementary row matrices) There are three types,
E;j, E;(t), Eij(t), corresponding to the three kinds of elementary row oper-
ation:

1. Ejj;, (i # j) is obtained from the identity matrix I,, by interchanging
rows ¢ and j.

2. E;(t), (t #0) is obtained by multiplying the i—th row of I,, by t.

3. E;i;(t), (i # j) is obtained from I,, by adding t times the j-th row of
I, to the i—th row.

EXAMPLE 2.5.6 (n=3.)

100 1 00 10 0
Eys=10 0 1|,E(-1)=[0 -1 0],Exs(-1)=]0 1 —1
010 0 01 00 1
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The elementary row matrices have the following distinguishing property:

THEOREM 2.5.7 If a matrix A is pre-multiplied by an elementary row—
matrix, the resulting matrix is the one obtained by performing the corre-
sponding elementary row—operation on A.

EXAMPLE 2.5.7

b
Ey3 f
d

o
o 8
a o 2

b 1 00 b
f 01 0 f

COROLLARY 2.5.2 The three types of elementary row—matrices are non—
singular. Indeed

1. B! = Ey;

2. E7Nt) = B;(t7Y);

3. (Ey(t) ™" = Eij(—t).

Proof. Taking A = I, in the above theorem, we deduce the following
equations:

EijEZ'j = 1,
E(ME() = I=E(#t )E({) ift#0
Eij(Q)Eij(=t) = In = Ei(=t)Ei(t).

EXAMPLE 2.5.8 Find the 3 x 3 matrix A = F3(5)F23(2)E12 explicitly.
Also find AL

Solution.
010 010 010
A=FE3(5)FE»3(2)| 1 0 0| =E35)|1 0 2|=]10 2
0 01 0 01 0 0 5

To find A~!, we have

A*l

( ( )E23(2)E12)
= By (Bs(2) " (Bs(5) "
= E12E23( 2)E3(571)
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100
= EpExp(-2)[0 1 0
00 %

10 0 01 -2

= Ep| 01 -2|=]|10 0

oog 00 1

REMARK 2.5.6 Recall that A and B are row—equivalent if B is obtained
from A by a sequence of elementary row operations. If E1,..., E, are the
respective corresponding elementary row matrices, then

B=E,(..(Es(E1A))...) = (E,...E))A = PA,

where P = FE,. ... F; is non—singular. Conversely if B = PA, where P is
non-singular, then A is row—equivalent to B. For as we shall now see, P is
in fact a product of elementary row matrices.

THEOREM 2.5.8 Let A be non—singular n X n matrix. Then
(i) A is row—equivalent to I,

(ii) A is a product of elementary row matrices.

Proof. Assume that A is non—singular and let B be the reduced row—echelon
form of A. Then B has no zero rows, for otherwise the equation AX = 0
would have a non—trivial solution. Consequently B = I,,.

It follows that there exist elementary row matrices F1, ..., E, such that
E.(...(F1A)...) = B = I, and hence A = E;'...E"!, a product of
elementary row matrices.

THEOREM 2.5.9 Let A be n x n and suppose that A is row—equivalent
to I,. Then A is non-singular and A~! can be found by performing the

same sequence of elementary row operations on [,, as were used to convert
A to I,.

Proof. Suppose that E,.... 1A = I,. In other words BA = I,,, where
B = E,...F is non-singular. Then B~1(BA) = B~'I,, and so A = B~!,
which is non—singular.

Also AL = (BY) ' = B=E,((...(E1l,) .. .), which shows that A~
is obtained from I, by performing the same sequence of elementary row
operations as were used to convert A to I,,.
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REMARK 2.5.7 It follows from theorem 2.5.9 that if A is singular, then
A is row—equivalent to a matrix whose last row is zero.

EXAMPLE 2.5.9 Show that A = [ 1 ? } is non-singular, find A~! and

express A as a product of elementary row matrices.

Solution. We form the partitioned matrix [A|I2] which consists of A followed
by I». Then any sequence of elementary row operations which reduces A to
I will reduce I to A~!. Here

=17 g Y]
rReronm o 3]
recom [ 1] 10
Ry — Ry — 2R, [(1) (1) ‘ _1‘ _ﬂ

Hence A is row—equivalent to I3 and A is non—singular. Also

4 -1 2
=[]

We also observe that
Elg(—2>E2(—1)E21(—1)A = IQ.
Hence

Al = Elg(—Q)EQ(—l)Egl(—l)
A = E21(1>E2<—1)E12(2).

The next result is the converse of Theorem 2.5.6 and is useful for proving
the non—singularity of certain types of matrices.

THEOREM 2.5.10 Let A be an n x n matrix with the property that
the homogeneous system AX = 0 has only the trivial solution. Then A is
non-singular. Equivalently, if A is singular, then the homogeneous system
AX = 0 has a non—trivial solution.
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Proof. If A is n x n and the homogeneous system AX = 0 has only the
trivial solution, then it follows that the reduced row—echelon form B of A
cannot have zero rows and must therefore be I,,. Hence A is non—singular.

COROLLARY 2.5.3 Suppose that A and B are n x n and AB = I,.
Then BA = I,,.

Proof. Let AB = I,, where A and B are n x n. We first show that B
is non-singular. Assume BX = 0. Then A(BX) = A0 =0, so (AB)X =
0, I,X =0 and hence X = 0.

Then from AB = I,, we deduce (AB)B~! = I, B~! and hence A = B~ 1.
The equation BB~! = I,, then gives BA = I,,.

Before we give the next example of the above criterion for non-singularity,
we introduce an important matrix operation.

DEFINITION 2.5.3 (The transpose of a matrix) Let A be an m xn
matrix. Then A?, the transpose of A, is the matrix obtained by interchanging
the rows and columns of A. In other words if A = [a;}], then (At)ji = ajj.

Consequently A? is n x m.

The transpose operation has the following properties:

1. (A" = 4

2. (A£B)! = A"+ B! if A and B are m x n;

3. (sA)! = sAl if s is a scalar;

4. (AB)! = B'Atif Ais m x n and B is n X p;

5. If A is non-singular, then A? is also non-singular and
()7 = (a7’

6. X!X =22 +...+22if X =[r1,...,2,]" is a column vector.

We prove only the fourth property. First check that both (AB)! and B!A!
have the same size (p x m). Moreover, corresponding elements of both
matrices are equal. For if A = [a;;] and B = [bj], we have

((AB)),, = (4B);

n
= Y aijby
j=1
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n

= (Bt)kj (At)ji

j=1
- (A,

There are two important classes of matrices that can be defined concisely
in terms of the transpose operation.

DEFINITION 2.5.4 (Symmetric matrix) A real matrix A is called sym-
metric if A' = A. In other words A is square (n x n say) and aj; = a;; for
all 1 <7< n,1<j<n. Hence

a b
=[5 ]
is a general 2 x 2 symmetric matrix.
DEFINITION 2.5.5 (Skew—symmetric matrix) A real matrix A is called

skew—symmetric if A' = —A. In other words A is square (n x n say) and
aj; = —a;j forall1 <i<n,1<j<n.

REMARK 2.5.8 Taking ¢ = j in the definition of skew—symmetric matrix
gives a;; = —ay; and so a; = 0. Hence

A= 0]

is a general 2 X 2 skew—symmetric matrix.
We can now state a second application of the above criterion for non—
singularity.
COROLLARY 2.5.4 Let B be an n x n skew—symmetric matrix. Then
A = I, — B is non-singular.
Proof. Let A = I, — B, where B! = —B. By Theorem 2.5.10 it suffices to
show that AX = 0 implies X = 0.
We have (I, — B)X =0, so X = BX. Hence X'X = X'BX.
Taking transposes of both sides gives
(X'BX)! = (X'X)
XtBt(Xt)t — Xt(Xt)t
X{(-B)X = X'X
-X'BX = X'X=X'BX.
Hence X'X = —X'X and X'X = 0. But if X = [21,...,2,]!, then X!X =
22 +...+22 =0 and hence 1 =0,...,1, = 0.
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2.6 Least squares solution of equations

Suppose AX = B represents a system of linear equations with real coeffi-
cients which may be inconsistent, because of the possibility of experimental
errors in determining A or B. For example, the system

T

Y
r+y

=1
= 2
3.001

is inconsistent.
It can be proved that the associated system A’AX = A'B is always
consistent and that any solution of this system minimizes the sum 7%+ ...+

r2, where 71,..., 7y, (the residuals) are defined by

ri = a1+ ...+ aipTy, — b,

for i = 1,...,m. The equations represented by A'AX = A'B are called the
normal equations corresponding to the system AX = B and any solution
of the system of normal equations is called a least squares solution of the
original system.

EXAMPLE 2.6.1 Find a least squares solution of the above inconsistent
System.

10 1
Solution. Here A= | 0 1 ,X:[x],B: 2
11 4 3.001
1 0]
1 01 2 1
t A _
ThenAA—[Oll} 0 1 —[12].
1 1]
1 01 ! 4.001
AlsoAtB:[O ) 1] 2 :[5'001].
3.001 | '
So the normal equations are
2r+y = 4.001
z+2y = 5.001
which have the unique solution
. 3.001 ~ 6.001
3 73
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EXAMPLE 2.6.2 Points (z1, y1),. .., (2n, yn) are experimentally deter-
mined and should lie on a line y = max + c¢. Find a least squares solution to
the problem.

Solution. The points have to satisfy

mxy+c = 1
maTnp +¢ = Yn,
or Ax = B, where
rp 1 (1
A=1| : |, x= [ m ] . B=| :
S c :
| Yn

The normal equations are given by (A*A)X = A'B. Here

i) 1 9 9
AtA— | TL e Tn A r{+...+x, T1+...+2x,
I O | S R T R n
Ty 1
Also
Y
AB — 1 ... Tp : _ T1Y1 + ...+ TpYn
1 ... 1 : ...+ Yn '
Yn

It is not difficult to prove that

A= det(A'A) = Y (2 —a))>%

1<i<j<n

which is positive unless 1 = ... = z,. Hence if not all of x1,...,x, are
equal, A'A is non-singular and the normal equations have a unique solution.
This can be shown to be

1 1
m= < Y (@wi—a)yi—yy) c= X > (wiyy —xyyi)(zi — ).

1<i<j<n 1<i<j<n

REMARK 2.6.1 The matrix A'A is symmetric.
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2.7 PROBLEMS

1 4
-3 1
express A as a product of elementary row matrices.

|

A = E91(—3)FE2(13)E12(4) is one such decomposition.]

1. Let A = { Prove that A is non-singular, find A~! and

[Answer: A1 = {

Slestl—
&l=Gle

2. A square matrix D = [d;;] is called diagonalif d;; = 0 for ¢ # j. (That
is the off-diagonal elements are zero.) Prove that pre-multiplication
of a matrix A by a diagonal matrix D results in matrix DA whose
rows are the rows of A multiplied by the respective diagonal elements
of D. State and prove a similar result for post—multiplication by a
diagonal matrix.

Let diag (aq,...,a,) denote the diagonal matrix whose diagonal ele-
ments d;; are ai,...,a,, respectively. Show that

diag (a1, ...,a,)diag (b1,...,b,) = diag (a1b1, ..., anby)

and deduce that if a; ...a, # 0, then diag (ay,...,ay) is non-singular
and
(diag (a1, . ..,a,)) "t = diag (a7 ;... a; ).
Also prove that diag (a1, ..., a,) is singular if a; = 0 for some i.
0 0 2
3. Let A= | 1 2 6 |. Prove that A is non-singular, find A~ and
3 79
express A as a product of elementary row matrices.
—12 7T =2
[Answers: A~1 = 5 -3 1],
5 0
2

A= E12E31 (3)E23E3(2)E12(2)E13(24)E23(—9) is one such decompo—
sition.]
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8.

CHAPTER 2. MATRICES

1 2 k
. Find the rational number k for which the matrix A= | 3 -1 1
5 3 -5
is singular. [Answer: k = —3.]
1 2 1. . . .
. Prove that A = [ 9 4 ] is singular and find a non—singular matrix

P such that PA has last row zero.

A= [ _:1)) le }, verify that A2 — 24 + 13l = 0 and deduce that
A"l = —1—13(A — 2[2)
1 1 -
.Let A=10 0
2 1

(i) Verify that A% = 342 — 34 + I3.

(ii) Express A% in terms of A?, A and I3 and hence calculate A*
explicitly.

(iii) Use (i) to prove that A is non-singular and find A~! explicitly.

-1 -8 —4
[Answers: (ii) A* =642 —8A + 3I3 = 12 9 4 |;
20 16 5
-1 =3 1
(iii) A= = A2 - 34 + 313 = 2 4 -1 1]
0 1 0

(i) Let B be an n x n matrix such that B3 = 0. If A = I, — B, prove
that A is non-singular and A~! = I,, + B + B2,
Show that the system of linear equations AX = b has the solution

X = b+ Bb+ B?.

0 r s
(i) fB= |0 0 ¢t |, verify that B3 = 0 and use (i) to determine
0 00
(I3 — B)~! explicitly.
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1 r s+rt
[Answer: | 0 1 t ]
00 1

9. Let A ben xn.

(i) If A%2 =0, prove that A is singular.
(ii) If A2 = A and A # I,,, prove that A is singular.

10. Use Question 7 to solve the system of equations

r+y—2z = a
z = b
2r4+y+22 = ¢

where a, b, ¢ are given rationals. Check your answer using the Gauss—
Jordan algorithm.

[Answer: © = —a—3b+c¢,y=2a+4b—c, z=1b.]

11. Determine explicitly the following products of 3 x 3 elementary row
matrices.

(i) E1oFas (i) E1(5)E12  (iii) E12(3)E91(—3) (iv) (El(l()O))_l
(V) Byt (vi) (Bi2(7))™" (vil) (Bra(7) B (1))~

12. Let A be the following product of 4 x 4 elementary row matrices:
A = E3(2)E14FE42(3).
Find A and A~! explicitly.
0 30

[Answers: A =

o O o
— o O O
w o = o
oNvE O O
o o o

010
0 0 2
1 00
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13.

14.

15.

16.

CHAPTER 2. MATRICES

Determine which of the following matrices over Zo are non—singular
and find the inverse, where possible.

(a)

—_ = O
S = O =
S = = O
— == =
C
_ O = =
el =)
— O = o

1
0
[Answer: (a) 1
1

— = =
_ o O =
O O =

Determine which of the following matrices are non-singular and find
the inverse, where possible.
[ 1 1 1] 2 2 4 (4 6 -3
(a) | =1 1 (b1 0 1 (¢l 0 0 7
. 2 0 0 | 010 | 0 0 5
o0y [L2ES] i
(d) | 0 =5 0| (e) (f) 5 6
0O 07 0012 5 79
- - 0 0 0 2 -
0 5 -1 2 00
[Answers: (a) | 0 1 3 | (b) 0 0 (A0 -1 0
1 -1 -1 : -1 - 0 01
1 -2 0 -3
0o 1 -2 2
©1o o 1 -1
o o o0 1

Let A be a non-singular n x n matrix. Prove that A? is non-singular
and that (A")~! = (A1)

Prove that A = [ CZ ] has no inverse if ad — be = 0.

d

[Hint: Use the equation A% — (a + d)A + (ad — be)I5 = 0.]
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17.

18.

19.

20.

21.

22.

1 a b
Prove that the real matrix A = | —a 1 ¢ | is non-singular by
b —c 1

proving that A is row—equivalent to [3.

If P~1AP = B, prove that P~'A"P = B" for n > 1.

Let A =
and deduce that

An_133+13” 4 -3
714 4 7\ 12 —4 3|

a b
LetA—[C d

[T

i P= L3 Verify that P~1AP = 15_2 0
%,—_14.er1ya =1 0 1

} be a Markov matrix; that is a matrix whose elements

are non—negative and satisfy a+c =1 = b+d. Alsolet P = [ g _1 ] .
Prove that if A # I then

1 0
. . o 71 —
(i) P is non-singular and P~ AP [ 0 atd—1 ],
1 b b 01
(ii) A _>b+C|:C C]asnﬂoo,lfA#[l O]‘
1 2 -1
fX=|3 4|andY = 3 |, find XX X'X, YY! Y'Y.
5 6 4
5 11 17 1 -3 —4
[Answers: | 11 25 39 |, [ ii ;l;l ] 1 -3 9 12 |, 26]
17 39 61 -4 12 16

Prove that the system of linear equations

r+2y = 4
r+y =
3r+5y = 12

is inconsistent and find a least squares solution of the system.
[Answer: z =6,y = —7/6.]



o4

23.

24.

25.
26.
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The points (0, 0), (1, 0), (2, —1), (3, 4), (4, 8) are required to lie on a
parabola y = a + bz + cx?. Find a least squares solution for a, b, c.
Also prove that no parabola passes through these points.

[Answer: a = 1, b= -2, c=1]

If A is a symmetric n x n real matrix and B is n x m, prove that B*AB
is a symmetric m X m matrix.

If Aism xn and B is n X m, prove that AB is singular if m > n.

Let A and B be n x n. If A or B is singular, prove that AB is also
singular.



Chapter 3

SUBSPACES

3.1 Introduction

Throughout this chapter, we will be studying F'™*, the set of all n—dimensional
column vectors with components from a field F. We continue our study of
matrices by considering an important class of subsets of F'™ called subspaces.
These arise naturally for example, when we solve a system of m linear ho-
mogeneous equations in n unknowns.

We also study the concept of linear dependence of a family of vectors.
This was introduced briefly in Chapter 2, Remark 2.5.4. Other topics dis-
cussed are the row space, column space and null space of a matrix over F,
the dimension of a subspace, particular examples of the latter being the rank
and nullity of a matrix.

3.2 Subspaces of I

DEFINITION 3.2.1 A subset S of F'™ is called a subspace of F™ if
1. The zero vector belongs to S; (that is, 0 € S);

2. Ifue Sand v € S, then u+v € §; (S is said to be closed under
vector addition);

3. Ifu e Sandte F, then tu € S; (S is said to be closed under scalar
multiplication).

EXAMPLE 3.2.1 Let A € My, xn(F). Then the set of vectors X € F™
satisfying AX = 0 is a subspace of F™ called the null space of A and is
denoted here by N(A). (It is sometimes called the solution space of A.)

55
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Proof. (1) A0 =0,s00¢€ N(A); (2) If X, Y € N(A), then AX = 0 and
AY =0,80 A(X+Y)=AX+AY =0+0=0andso X +Y € N(A); (3)
If X e N(A) and t € F, then A(tX) =t(AX) =t0=0,s0tX € N(A).

10

01 ], then N(A) = {0}, the set consisting of

For example, if A = {

1 2

just the zero vector. If A = [ 9 4

], then N(A) is the set of all scalar
multiples of [—2, 1]*.

EXAMPLE 3.2.2 Let Xq,...,X,, € ™. Then the set consisting of all
linear combinations 1 X1 + - -+ + ., Xi, where z1,..., 2, € F, is a sub-
space of F™. This subspace is called the subspace spanned or generated by
X1,..., X and is denoted here by (Xi,..., X,,). We also call X1,...,X,,
a spanning family for S = (Xy,..., X;,).

Proof. (1) 0 = 0X; + -+ 0Xm, 50 0 € (X1,...,Xm); (2) If X, Y €
(X1,..., Xm), then X =21 X1+ -+ 2z, Xpnand Y =1 X5 + - + ym X,
SO

X+Y = (o1 Xi+FzpXn)+WiXi+ -+ ymXm)
= ($1+y1)X1++(:Em+ym)Xm€<X1,,Xm>

(3)If X € (X1,...,X,n) and t € F, then

X = o1 Xi+ - +z,Xn
tX = t(fL'le + -+ CEme)
= (tSCl)Xl—f—"'—l-(tﬂjm)XmE <X1,...,Xm>.

For example, if A € My, «n(F'), the subspace generated by the columns of A
is an important subspace of F and is called the column space of A. The
column space of A is denoted here by C(A). Also the subspace generated
by the rows of A is a subspace of F™ and is called the row space of A and is
denoted by R(A).

EXAMPLE 3.2.3 For example F" = (Ey,..., E,), where E,..., E, are
the n—dimensional unit vectors. For if X = [z1,...,7,]' € F", then X =
1B+ -+ an By

EXAMPLE 3.2.4 Find a spanning family for the subspace S of R? defined
by the equation 2x — 3y + 5z = 0.
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Solution. (S is in fact the null space of [2, —3, 5], so S is indeed a subspace
of R3.)
If [z, y, 2]t € S, then x = % — %z. Then
_35
2
+z| O
1

<
Il
<
Il
<
O ow

and conversely. Hence [%, 1, 0]* and [—%, 0, 1]¢ form a spanning family for

S.

The following result is easy to prove:

LEMMA 3.2.1 Suppose each of Xi,...,X, is a linear combination of
Yi1,..., Y. Then any linear combination of Xi,..., X, is a linear combi-
nation of Yi,...,Ys.

As a corollary we have

THEOREM 3.2.1 Subspaces (Xi,...,X,) and (Y7,...,Ys) are equal if
each of X1, ..., X, is a linear combination of Y7, ...,Y; and each of Y7, ..., Y}
is a linear combination of X7y,..., X,.

COROLLARY 3.2.1 Subspaces (X1,...,X,, Z1,...,Z;) and (X1,..., X,)
are equal if each of Z1,...,Z; is a linear combination of X,..., X,.

EXAMPLE 3.2.5 If X and Y are vectors in R", then
(X, V)=(X+Y, X -Y).

Solution. Each of X +Y and X — Y is a linear combination of X and Y.
Also

1 1 1 1
so each of X and Y is a linear combination of X +Y and X — Y.

There is an important application of Theorem 3.2.1 to row equivalent
matrices (see Definition 1.2.4):

THEOREM 3.2.2 If A is row equivalent to B, then R(A) = R(B).

Proof. Suppose that B is obtained from A by a sequence of elementary row
operations. Then it is easy to see that each row of B is a linear combination
of the rows of A. But A can be obtained from B by a sequence of elementary
operations, so each row of A is a linear combination of the rows of B. Hence
by Theorem 3.2.1, R(A) = R(B).
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REMARK 3.2.1 If A is row equivalent to B, it is not always true that
C(A) =C(B).

11 11

1 1 0 0
reduced row—echelon form of A. However we see that

C(A):<{H’[”>:<[”>

and similarly C(B) = < [ (1] } >
1

Consequently C(A) £ C(B), as [ . ] € C(A) but [ } ] ¢ C(B).

For example, if A = [ ] and B = { ], then B is in fact the

3.3 Linear dependence

We now recall the definition of linear dependence and independence of a
family of vectors in F™ given in Chapter 2.

DEFINITION 3.3.1 Vectors Xi,...,X,, in F™ are said to be linearly
dependent if there exist scalars x1, ..., xmy,, not all zero, such that

1 X1+ -+ Xn =0.

In other words, X1, ..., X,, are linearly dependent if some X; is expressible
as a linear combination of the remaining vectors.

X1,..., X, are called linearly independent if they are not linearly depen-
dent. Hence X1, ..., X,, are linearly independent if and only if the equation

has only the trivial solution z; =0, ..., x,, = 0.

EXAMPLE 3.3.1 The following three vectors in R3

1 1 -1
Xi=|2|, Xo=| 1|, Xs=| 7
3 2 12

are linearly dependent, as 2X; + 3Xs 4+ (—1)X3 = 0.



3.3. LINEAR DEPENDENCE 59

REMARK 3.3.1 If X3,...,X,, are linearly independent and
1 X1+ X = Xa o+ ym X,
then x1 = y1, ...,y = ym. For the equation can be rewritten as
(1 —y) X1+ 4 (Tm — ym)Xm =0
andsox; —y1 =0,...,2m —ym = 0.

THEOREM 3.3.1 A family of m vectors in F'™ will be linearly dependent
if m > n. Equivalently, any linearly independent family of m vectors in F'™
must satisfy m < n.

Proof. The equation
01 X1+ -+ Xm =0

is equivalent to n homogeneous equations in m unknowns. By Theorem 1.5.1,
such a system has a non—trivial solution if m > n.

The following theorem is an important generalization of the last result
and is left as an exercise for the interested student:

THEOREM 3.3.2 A family of s vectors in (Xq,...,X,) will be linearly
dependent if s > r. Equivalently, a linearly independent family of s vectors
in (Xi,...,X,) must have s < r.

Here is a useful criterion for linear independence which is sometimes
called the left—to-right test:

THEOREM 3.3.3 Vectors X1,..., X, in F" are linearly independent if
(a) X1 #0;

b) For each k with 1 < k < m, X is not a linear combination of
(
X1, Xg1.

One application of this criterion is the following result:

THEOREM 3.3.4 Every subspace S of F™ can be represented in the form
S =(X1,...,Xm), where m < n.
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Proof. If S = {0}, there is nothing to prove — we take X1 =0 and m = 1.

So we assume S contains a non—zero vector X1; then (X;) C S as Sis a
subspace. If S = (X1), we are finished. If not, S will contain a vector Xy,
not a linear combination of Xi; then (X;, X3) C S as S is a subspace. If
S = (X1, X2), we are finished. If not, S will contain a vector X3 which is
not a linear combination of X; and Xs. This process must eventually stop,
for at stage k we have constructed a family of k& linearly independent vectors
X1,..., X}, all lying in F™ and hence k < n.

There is an important relationship between the columns of A and B, if
A is row—equivalent to B.

THEOREM 3.3.5 Suppose that A is row equivalent to B and let ¢1, ..., ¢,
be distinct integers satisfying 1 < ¢; < n. Then

(a) Columns A, ,..., A, of A are linearly dependent if and only if the
corresponding columns of B are linearly dependent; indeed more is
true:

xlA*cl 4+ m'rA*cT =0& xlB*cl 4+ xrB*cr =0.

(b) Columns A,c,, ..., As, of A are linearly independent if and only if the
corresponding columns of B are linearly independent.

(¢) If 1 < c¢py1 <mand ¢4 is distinet from ¢y, ..., ¢, then

Ao = 21A4e) + -+ 20 Ak, & Bic, .1 = 21Bse; + -+ + 27 Bie,.-

Proof. First observe that if Y = [y1,...,y,]" is an n—dimensional column
vector and A is m X n, then

AY = 1A + -+ ynAin.

Also AY =0 < BY =0, if B is row equivalent to A. Then (a) follows by
taking y; = ., if 1 = ¢; and y; = 0 otherwise.
(b) is logically equivalent to (a), while (c) follows from (a) as

A*CT'H - ZlA*Cl +ot ZTA*CT A Z]-A*Cl + 4+ ZTA*CT + (_1)A*Cr+1 =0
= ZlB*cl +”'+ZT'B*CT+(_1)B*CT+1 :0
~ B*cr+1 = ZlB*cl +---+ ZTB*q»
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EXAMPLE 3.3.2 The matrix

1 1 51 4
A=|2 -1 1 2 2
3 06 0 =3
has reduced row—echelon form equal to
10 2 0 -1
B=|(013 0 2
0001 3

We notice that By1, B2 and B,y are linearly independent and hence so are
A*l, A*Q and A*4. Also

B*3 = 2B*1 + 3B*2
B*5 == (_1)B>k1 + 2B>k2 + 3B*47

so consequently

A*S = 214*1 + 3A>k2
A*5 = <_1)A*1 + 2A*2 + 314*4

3.4 Basis of a subspace
We now come to the important concept of basis of a vector subspace.

DEFINITION 3.4.1 Vectors Xi,...,X,, belonging to a subspace S are
said to form a basis of S if

(a) Every vector in S is a linear combination of X7, ..., X,;
(b) Xi,..., Xy, are linearly independent.

Note that (a) is equivalent to the statement that S = (Xy,...,X,,) as we
automatically have (X1,...,X,,) € S. Also, in view of Remark 3.3.1 above,
(a) and (b) are equivalent to the statement that every vector in S is uniquely
expressible as a linear combination of X1, ..., X,,.

EXAMPLE 3.4.1 The unit vectors FE1,..., E, form a basis for F™.
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REMARK 3.4.1 The subspace {0}, consisting of the zero vector alone,
does not have a basis. For every vector in a linearly independent family
must necessarily be non—zero. (For example, if X; = 0, then we have the
non—trivial linear relation

1X1+0Xo+---+0X,, =0
and Xi,...,X,, would be linearly dependent.)

However if we exclude this case, every other subspace of F'™ has a basis:

THEOREM 3.4.1 A subspace of the form (Xy,...,X,,), where at least
one of Xi,...,X,, is non-—zero, has a basis X, ,...,X.,., where 1 < ¢; <
e < ep <M.

Proof. (The left-to—right algorithm). Let ¢ be the least index k for which
X}, is non—=zero. If ¢; = m or if all the vectors X with & > ¢; are linear
combinations of X, terminate the algorithm and let » = 1. Otherwise let
co be the least integer k > c; such that Xj is not a linear combination of
Xe, -

If ¢ = m or if all the vectors X} with & > c9 are linear combinations
of X, and X.,, terminate the algorithm and let » = 2. Eventually the
algorithm will terminate at the r—th stage, either because ¢, = m, or because
all vectors X with k > ¢, are linear combinations of X.,,..., X, .

Then it is clear by the construction of X, ..., X,,, using Corollary 3.2.1
that

(a) (Xeys-oos Xep) = (X1, o0, Xin);

(b) the vectors X,,,..., X, are linearly independent by the left—to-right
test.

Consequently X.,,..., X, form a basis (called the left-to—right basis) for
the subspace (X1,..., X;).

EXAMPLE 3.4.2 Let X and Y be linearly independent vectors in R".
Then the subspace (0, 2X, X, —Y, X +Y) has left—to-right basis consisting
of 2X, -Y.

A subspace S will in general have more than one basis. For example, any
permutation of the vectors in a basis will yield another basis. Given one
particular basis, one can determine all bases for S using a simple formula.
This is left as one of the problems at the end of this chapter.

We settle for the following important fact about bases:
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THEOREM 3.4.2 Any two bases for a subspace .S must contain the same
number of elements.

Proof. For if Xi,..., X, and Y1,...,Y; are bases for S, then Yi,...,Y}
form a linearly independent family in S = (X1,..., X,) and hence s < r by
Theorem 3.3.2. Similarly r < s and hence r = s.

DEFINITION 3.4.2 This number is called the dimension of S and is
written dim S. Naturally we define dim {0} = 0.

It follows from Theorem 3.3.1 that for any subspace S of F™, we must have
dim S < n.

EXAMPLE 3.4.3 If F1,..., E, denote the n—dimensional unit vectors in
F" then dim (E1,...,E;) =ifor 1 <i<n.

The following result gives a useful way of exhibiting a basis.

THEOREM 3.4.3 A linearly independent family of m vectors in a sub-
space S, with dim S = m, must be a basis for S.

Proof. Let Xi,...,X,, be a linearly independent family of vectors in a
subspace S, where dim .S = m. We have to show that every vector X € S is
expressible as a linear combination of X1, ..., X,,. We consider the following

family of vectors in S: X1,..., X,,, X. This family contains m 4+ 1 elements
and is consequently linearly dependent by Theorem 3.3.2. Hence we have

1 X1+t Xn +me1 X =0, (31)
where not all of x1,...,xy,+1 are zero. Now if x,,41 = 0, we would have

1 X1+ -+ X, =0,

with not all of z1, .. ., z,, zero, contradictiong the assumption that Xy ..., X,
are linearly independent. Hence z,,+1 # 0 and we can use equation 3.1 to
express X as a linear combination of Xy, ..., X;y:
—x —x
X=—2X+ . +—"x,.

Tm+1 Tm+1
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3.5 Rank and nullity of a matrix

We can now define three important integers associated with a matrix.
DEFINITION 3.5.1 Let A € My, xn(F'). Then

(a) column rank A =dim C(A);

(b) row rank A =dim R(A);

(¢) nullity A =dim N(A).

We will now see that the reduced row—echelon form B of a matrix A allows
us to exhibit bases for the row space, column space and null space of A.
Moreover, an examination of the number of elements in each of these bases
will immediately result in the following theorem:

THEOREM 3.5.1 Let A € Myyyn(F). Then
(a) column rank A =row rank A4;
(b) column rank A+ nullity A = n.

Finding a basis for R(A): The r non-zero rows of B form a basis for R(A)
and hence row rank A = r.
For we have seen earlier that R(A) = R(B). Also

R(B) = <B1*7"->Bm*>
— (Bis,..., B, 0....0)
— (Bu.....Bn).

The linear independence of the non—zero rows of B is proved as follows: Let
the leading entries of rows 1, ..., 7 of B occur in columns ¢y, ..., ¢,. Suppose
that

xlBl* +---+ -TTBT* =0.

Then equating components c1, ..., ¢, of both sides of the last equation, gives
1 =0,...,2, = 0, in view of the fact that B is in reduced row— echelon
form.

Finding a basis for C'(A): The r columns A, ,..., A, form a basis for
C(A) and hence column rank A = r. For it is clear that columns ¢y, ..., ¢,
of B form the left-to-right basis for C'(B) and consequently from parts (b)
and (c) of Theorem 3.3.5, it follows that columns cy,...,¢. of A form the
left—to-right basis for C'(A).




3.5. RANK AND NULLITY OF A MATRIX 65

Finding a basis for N(A): For notational simplicity, let us suppose that ¢; =
1,...,¢. = 7. Then B has the form

1 0 0 bipt1 -+ bin
0 1 0 b1 -+ bon
B=|00 - 1 byy1 - bm
00 -0 0 - 0
(00 -0 0 - 0 |

Then N(B) and hence N(A) are determined by the equations

1 = (=birp)Trir + -+ (“bin)zn
Ty = (_brr+1)$r+1 + -+ (_brn)$n7
where z,41, ..., T, are arbitrary elements of F'. Hence the general vector X

in N(A) is given by

T [ —bir11 —bn,

Ly _ —brrg1 —brn

Tyt = Tr41 1 + + 0 (32)
| Tn | 0 | 1 ]

= T Xi+ -+ Xn g

Hence N(A) is spanned by X,..., X, as x,41,...,x, are arbitrary. Also
X1,..., X, are linearly independent. For equating the right hand side of
equation 3.2 to 0 and then equating components r 4+ 1,...,n of both sides
of the resulting equation, gives z,41 =0,...,z, = 0.

Consequently X1, ..., X, _, form a basis for N(A).

Theorem 3.5.1 now follows. For we have

row rank A = dimR(A)=r

column rank A = dimC(A)

T.

Hence
row rank A = column rank A.
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Also
column rank A + nullity A =r +dimN(A) =r+ (n —r) = n.

DEFINITION 3.5.2 The common value of column rank A and row rank A
is called the rank of A and is denoted by rank A.

EXAMPLE 3.5.1 Given that the reduced row—echelon form of

1 1 5 1 4
A=|2 -1 1 2 2
3 06 0 -3
equal to
10 2 0 -1
B=|0130 2],
0 001 3
find bases for R(A), C(A) and N(A).

Solution. [1, 0, 2,0, —1], [0, 1, 3, 0, 2] and [0, 0, 0, 1, 3] form a basis for
R(A). Also

1 1 1
A*l - 2 ) A*2 - -1 ) A*4 - 2
3 0 0

form a basis for C(A).
Finally N(A) is given by

€1 —2x3 + x5 —2 1
) —3{[}3 — 2{L‘5 -3 —2
xr3 | = T3 =3 1 | + x5 0 | =x3X1 4+ z5X0,
T4 —3xs5 0 -3
I5 xT5 0 1

where 3 and x5 are arbitrary. Hence X; and X form a basis for N(A).
Here rank A = 3 and nullity A = 2.

1 2

EXAMPLE 3.5.2 Let A = [ 9 4

} Then B = [ (1) (2) } is the reduced

row—echelon form of A.
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Hence [1, 2] is a basis for R(A) and [ ; } is a basis for C'(A). Also N(A)

is given by the equation z1 = —2x9, where x5 is arbitrary. Then

===

and hence { _f ] is a basis for N(A).

Here rank A = 1 and nullity A = 1.

1 2

EXAMPLE 3.5.3 Let A = [ 3 4

} Then B = [ 10 } is the reduced

0 1
row—echelon form of A.

Hence [1, 0], [0, 1] form a basis for R(A) while [1, 3], [2, 4] form a basis
for C'(A). Also N(A) = {0}.

Here rank A = 2 and nullity A = 0.

We conclude this introduction to vector spaces with a result of great
theoretical importance.

THEOREM 3.5.2 Every linearly independent family of vectors in a sub-
space S can be extended to a basis of S.

Proof. Suppose S has basis Xi,...,X,, and that Y7,...,Y, is a linearly
independent family of vectors in S. Then

S=(X1,.. ., Xpn)=M,....Y,, X1, ..., Xpm),

as each of Y1,...,Y, is a linear combination of X, ..., X,,.
Then applying the left—to—right algorithm to the second spanning family
for S will yield a basis for S which includes Y71, ..., Y.

3.6 PROBLEMS

1. Which of the following subsets of R? are subspaces?

(a) [z, y| satisfying x = 2y;
(b) [z, y] satisfying x = 2y and 2z = y;
(¢) [z, y] satisfying = = 2y + 1;

) [z, 4]

x, y] satisfying xy = 0;
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. Determine if X7 =
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(e) [z, y] satisfying x > 0 and y > 0.

[Answer: (a) and (b).]

. If X, Y, Z are vectors in R", prove that

(X,Y,Z2)=(X+Y, X+ 2, Y + 2).

, Xo and X3 = are linearly

N = O =
N = = O
W = = =

independent in R*.

. For which real numbers A are the following vectors linearly independent

in R3?
A -1 -1
Xi=| -1, Xyo= A, Xg=| -1
-1 -1 A

. Find bases for the row, column and null spaces of the following matrix

over Q:

1
2
0

[eoBEGL RN \V]

1
3
3

o O N
O = O O

1

—_
—_
Nej

11

. Find bases for the row, column and null spaces of the following matrix

over Zs:

2

I
O = O =
O = = O

1
0
1
1

=)
S O = =

. Find bases for the row, column and null spaces of the following matrix

over Zs:

w o N =
O O = =
N O =N
N = =)
w W w
N O N W
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. Find bases for the row, column and null spaces of the matrix A defined

in section 1.6, Problem 17. (Note: In this question, F' is a field of four
elements. )

If X4, ..., X, form a basis for a subspace S, prove that

X, Xi+Xo, oo, X+ + Xy

also form a basis for S.

Let A = [ (11 ll) (1: ] . Find conditions on a, b, ¢ such that (a) rank A =

1; (b) rank A = 2.
[Answer: (a) a = b= ¢; (b) at least two of a, b, ¢ are distinct.]

Let S be a subspace of F™ with dim .S = m. If X4,..., X,, are vectors
in S with the property that S = (Xy,..., X,,), prove that X ..., X,
form a basis for S.

Find a basis for the subspace S of R? defined by the equation
T+ 2y +32=0.

Verify that Y7 = [—1, —1, 1]* € S and find a basis for S which includes
Y;.

Let Xi,..., X, be vectors in F". If X; = X}, where i < j, prove that
X1,...X,, are linearly dependent.

Let Xi,..., X;n41 be vectors in F". Prove that
dim (X1, ..., Xpt1) = dim (X5, ..., X;)
if X;u41 is a linear combination of X7,..., X,,, but
dim (Xq,..., Xpy1) =dim (Xy, ..., X)) + 1

if X141 is not a linear combination of X7,..., X;,.

Deduce that the system of linear equations AX = B is consistent, if
and only if
rank [A|B] = rank A.
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16.

17.

18.

19.
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. Let ay,...,a, be elements of F, not all zero. Prove that the set of
vectors [x1,...,x,]" where xq,. .., x, satisfy

a1y + -+ apTy =0
is a subspace of F™ with dimension equal to n — 1.
Prove Lemma 3.2.1, Theorem 3.2.1, Corollary 3.2.1 and Theorem 3.3.2.
Let R and S be subspaces of F", with R C S. Prove that
dim R < dim S

and that equality implies R = S. (This is a very useful way of proving
equality of subspaces.)

Let R and S be subspaces of F™. If RU S is a subspace of F™, prove
that RC Sor S C R.

Let X1,..., X, be a basis for a subspace S. Prove that all bases for .S
are given by the family Yi,...,Y,, where

.
Y=Y ayX;,
i=1

and where A = [a;j] € M,x,(F) is a non-singular matrix.
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Similarly

4mi —4mi

(z—e5 )(z—e5 ):ZZ—QZCOS%T-FL

This gives the desired factorization.

EXAMPLE 5.7.2 Solve 2% = i.

Solution. |i| =1 and Argi = § = a. So by equation 5.4, the solutions are
o = i35 k=0, 1, 2.

First, k = 0 gives

V3

0 T tisin Z +
= = — in —=—+—.
Zp=e cos6 1S 5 5 5
Next, k = 1 gives
zlzesﬁzcos%—i-isin%:T\/_—k%.
Finally, k = 2 gives
omi 97T+.. .
Z1=€6 =Cos — +isin — = —i.
! 6 6

We finish this chapter with two more examples of De Moivre’s theorem.

EXAMPLE 5.7.3 If

C = 14cosf+---+cos (n—1)0,
S = sinf+---+sin (n—1)6,

prove that
i nb i nl
sin &% _ sin &5 | _
C=—=2cos (n 21)9 and § = —=sin (n 21)6,
Sin 5 S1n 5

if 0 # 2k, k € Z.
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Solution.

C+iS = 1+ (cosf+isinf)+---+ (cos (n—1)0+isin (n —1)0)
14l g g gitn=1)0

= 14z+---+2""" where z ="

1—2" .
= 3 , if z £ 1, ie. 0 # 2km,
—z
1= eind B e%(eﬂ;g — 6”59)
1_610 e%(e%ﬁ —e%)
: 6
_ ei(n—l)gsm%
Sin 5
sin ¢
= (cos (n—1)4 +isin (n —1)§)— 3 :
Sin )

The result follows by equating real and imaginary parts.

EXAMPLE 5.7.4 Express cos nf and sin nf in terms of cosf and sin @,
using the equation cos nf + sin nf = (cos @ + isinh)™.

Solution. The binomial theorem gives

(cosf +isinf)™ = cos™ 0 + () cos" ! O(isin ) + (5) cos™ 2 (isinf)? + - - -
+ (isinf)".

Equating real and imaginary parts gives
cos nf = cos™ @ — (%) cos" "2 0sin? @ + - - -

sin nf = (’f) cos" L fhsinfh — (g) cos" 3 0sin0 + - .

5.8 PROBLEMS

1. Express the following complex numbers in the form x + iy, z,y real:

i i)?
(i) (=3 +4)(14 — 20); (i) f - i (i) 7(1;“_21,) .

[Answers: (1) —40 + 204; (i) —12 + H4; (i) —% + £]

2. Solve the following equations:
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(i) iz+(2—-10i)z = 3z+2i
i) (A+i)z+2—-)w = =3i
(14+2i)z+B+id)w = 2+2
[Answers:(i) z = —4% — 4@—1; (i) z = —1 +5i, w = 1_59 % ]
. Express 1+ (1+4) + (14+4)2 +... + (1 +14)% in the form z + iy, z,y
real. [Answer: (1 + 2°0)i.]

. Solve the equations: (i) 22 = —8 — 6i; (i) 22 — (3+4)z+4+3i = 0.

[Answers: (i) z = £(1 — 37); (i) 2 =2—1, 1 + 2i/]

Find the modulus and principal argument of each of the following
complex numbers:

(i) 4+i; (i) —

\S][oV]

— % (iil) —1+2i;  (iv) 3(=1+iV3).

[Answers: (i) V17, tan™'1; (ii) @, —m + tan~1 35 (iii) V5, T —

tan~12)

Express the following complex numbers in modulus-argument form:
(i) 2= (1+d)(14+iv3)(V3 — ).

(14451 —iv3)®

() == (V3 + i)

[Answers:

(1) z = 4\/_(COS S + 7sin %) (11) y = 27/2(COS 1lm +isin %) ]

(i) If z =2(cos F+isin §) and w = 3(cos g +isin §), find the polar
form of
5

(a) zw; (b) F;(c) £5(d) &=

w)’ z) w?”

(ii) Express the following complex numbers in the form z + iy:
() (1402 0) (1)

[Answers: (i): (a) 6(cos 2% +isin 57); (b) Z(cos 75 + isin 5);

(c) 3(cos =& +isin —%); (d) %(cos Hx 4 jsin 1T);

(i): (a) —64; (b) —i.]
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8. Solve the equations:

(1) 22 =144V3; (i) 2* = 4; (iii) 2° = —8i; (iv) 2 =2 — 2i.

[Answers: (i) 2 = £9550 (i) i*(cos T+ isin 5),k = 0,1,2,3; (i)
2=2i, —v/3—i, V3—1i; (iv) 2 = i*28 (cos & —isin &), k=0,1,2,3]
9. Find the reduced row—echelon form of the complex matrix

241 —-1+2¢ 2
1+7 —-1+43 1
1+2¢ 244 143

[Answer:

S O =
O O =

0
1]
0

10. (i) Prove that the line equation lx + my = n is equivalent to
pz + pz = 2n,

where p =1 + im.

(ii) Use (ii) to deduce that reflection in the straight line
Pz+pz=mn
is described by the equation
pw + pz = n.

[Hint: The complex number [ + im is perpendicular to the given
line.]

(iii) Prove that the line |z —a| = |z —b| may be written as pz+pz = n,

where p = b — a and n = |b|? — |a|?. Deduce that if z lies on the
Apollonius circle % = ), then w, the reflection of z in the line
|z—al

|z — a| = |z — b], lies on the Apollonius circle =

>

11. Let a and b be distinct complex numbers and 0 < a < .

(i) Prove that each of the following sets in the complex plane rep-

resents a circular arc and sketch the circular arcs on the same
diagram:
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Z J—
Arg =, —q, T —Q, @ — T.
z—b
z—a
Also show that Arg ;=7 represents the line segment joining
z

a and b, while Arg Z = 0 represents the remaining portion of

Z —
the line through a and b.
(ii) Use (i) to prove that four distinct points z1, 29, 23, 24 are con-

cyclic or collinear, if and only if the cross—ratio

24 — 21,23 — 21

24— 29" 23 — 29

is real.

(iii) Use (ii) to derive Ptolemy’s Theorem: Four distinct points A, B, C, D
are concyclic or collinear, if and only if one of the following holds:

AB-CD+ BC-AD = AC-BD

BD-AC+ AD-BC = AB-CD
BD-AC+ AB-CD = AD-BC.



Chapter 6

EIGENVALUES AND
EIGENVECTORS

6.1 Motivation

We motivate the chapter on eigenvalues by discussing the equation
2 2 _
az” + 2hxy + by” = ¢,

where not all of a, h, b are zero. The expression az? + 2hzy + by? is called
a quadratic form in x and y and we have the identity

2 2 a h T
ax® + 2hay + by’ = [ y][h b}{y]:XtAX,

a h

T
WhereX—[y}andA—[h b

] . A is called the matrix of the quadratic

form.

We now rotate the x, y axes anticlockwise through 6 radians to new
x1, y1 axes. The equations describing the rotation of axes are derived as
follows:

Let P have coordinates (x, y) relative to the z, y axes and coordinates
(1, y1) relative to the z;, y1 axes. Then referring to Figure 6.1:

115
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Y P

al x1

Figure 6.1: Rotating the axes.

x = O0Q =OPcos (0+ «)
= OP(cosfcosa — sinfsin o)
= (OPcosa)cosf — (OPsina)sin 6
= ORcosf — PRsinf

= x1cosf —ypsind.

Similarly y = x1sin 6 + y1 cos 6.
We can combine these transformation equations into the single matrix

equation:
x | | cosf —sind T
y | | sinf@  cosf |

or X = PY. where X = | © | v = | ® | ana p = | €00 —sinf ¢
Y Y1 sin 0 cos 6

We note that the columns of P give the directions of the positive x; and y;
axes. Also P is an orthogonal matrix — we have PP! = I, and so P~! = P,
The matrix P has the special property that det P = 1.

cosf) —sinf
sinf  cosf
We shall show soon that any 2 x 2 real orthogonal matrix with determinant

A matrix of the type P = } is called a rotation matrix.
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equal to 1 is a rotation matrix.
We can also solve for the new coordinates in terms of the old ones:

1| _y _pty — c9s0 sin ¢ x 7
Y1 —sinf cosf Y

so x1 = xcosf + ysinfh and y; = —xsinf + ycosf. Then
X'AX = (PY)'A(PY) =YY (P'AP)Y.

Now suppose, as we later show, that it is possible to choose an angle 6 so
that PLAP is a diagonal matrix, say diag(\1, A2). Then

and relative to the new axes, the equation ax? + 2hxy + by? = ¢ becomes
A2 + Xoy? = ¢, which is quite easy to sketch. This curve is symmetrical
about the x1 and y; axes, with P, and P», the respective columns of P,
giving the directions of the axes of symmetry.

Also it can be verified that P; and P, satisfy the equations

AP1 == )\1P1 and APQ = )\2P2.

u1

These equations force a restriction on A1 and Ao. For if P, = [ ], the

U1
first equation becomes

P e e R P b

Hence we are dealing with a homogeneous system of two linear equations in
two unknowns, having a non—trivial solution (u1, v1). Hence
a — )\1 h

h b— X\
Similarly, Ao satisfies the same equation. In expanded form, A; and As
satisfy

=0.

M —(a+bX+ab—h*=0.
This equation has real roots
\ a+b=++/(a+b)?2—4(ab— h?) _atbE/(a—b)+4n° (6.2)
2 2
(The roots are distinct if a # b or h # 0. The case a = b and h = 0 needs
no investigation, as it gives an equation of a circle.)

The equation A2 — (a+b)A+ab—h? = 0 is called the eigenvalue equation
of the matrix A.
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6.2 Definitions and examples

DEFINITION 6.2.1 (Eigenvalue, eigenvector)
Let A be a complex square matrix. Then if A is a complex number and
X a non—zero complex column vector satisfying AX = AX, we call X an
eigenvector of A, while A is called an eigenvalue of A. We also say that X
is an eigenvector corresponding to the eigenvalue .

So in the above example P; and P, are eigenvectors corresponding to A;
and Ao, respectively. We shall give an algorithm which starts from the
a

nob ] and constructs a rotation matrix P such that

eigenvalues of A = [

P'AP is diagonal.

As noted above, if X\ is an eigenvalue of an n x n matrix A, with
corresponding eigenvector X, then (A — A[,)X = 0, with X # 0, so
det (A — AI,) = 0 and there are at most n distinct eigenvalues of A.

Conversely if det (A — AI,,) =0, then (A — AI,,) X = 0 has a non—trivial
solution X and so A is an eigenvalue of A with X a corresponding eigenvector.

DEFINITION 6.2.2 (Characteristic equation, polynomial)
The equation det (A — AI,,) = 0 is called the characteristic equation of A,
while the polynomial det (A — \I},) is called the characteristic polynomial of
A. The characteristic polynomial of A is often denoted by ch 4 ().

Hence the eigenvalues of A are the roots of the characteristic polynomial
of A.

a

For a 2 x 2 matrix A = [ . b } , it is easily verified that the character-

d
istic polynomial is A? — (trace A)\ +det A, where trace A = a+d is the sum
of the diagonal elements of A.

2 1

EXAMPLE 6.2.1 Find the eigenvalues of A = [ 1 o

] and find all eigen-

vectors.

Solution. The characteristic equation of A is A2 — 4\ +3 =0, or
A=1)(A=3)=0.

Hence A =1 or 3. The eigenvector equation (A — AI,,) X = 0 reduces to

NI
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or
2-Nz+y =
r+(@2-Ny =
Taking A = 1 gives
rt+y =
z4+y = 0,
which has solution * = —y, y arbitrary. Consequently the eigenvectors

corresponding to A = 1 are the vectors [ _z } , with y £ 0.
Taking A = 3 gives

r—Yy = 07
which has solution x = y, y arbitrary. Consequently the eigenvectors corre-
sponding to A = 3 are the vectors [ ‘z } , with y #£ 0.
Our next result has wide applicability:

THEOREM 6.2.1 Let A be a 2 X 2 matrix having distinct eigenvalues \;
and Ay and corresponding eigenvectors X; and Xo. Let P be the matrix
whose columns are X; and Xp, respectively. Then P is non-singular and

A1 O
-1 - 1
P AP_[O AQ].

Proof. Suppose AX; = A1 X7 and AXs = Ao X5. We show that the system
of homogeneous equations

X1 +yXe=0

has only the trivial solution. Then by theorem 2.5.10 the matrix P =
[X1]|X?2] is non—singular. So assume

Then A(zX; +yX2) = A0 =0, so z(AX1) + y(AX2) = 0. Hence

xA X1 + yAaXs = 0. (6.4)
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Multiplying equation 6.3 by A; and subtracting from equation 6.4 gives
(/\2 — )\1>ng =0.

Hence y = 0, as (A2— A1) # 0 and X5 # 0. Then from equation 6.3, zX; =0
and hence z = 0.
Then the equations AX7 = A\ X1 and AXs = A X5 give

AP = A[X1|X,o] = [AX1|AX,] = [MX1|AXo]
_ A0 A0
= [X] &) [ 0 o ]‘P [ 0 )Xo }’
SO
s [ M0
P AP{O L

EXAMPLE 6.2.2 Let A = [ ? ; ] be the matrix of example 6.2.1. Then

-1 1
X, = [ ] and Xy = [ ] are eigenvectors corresponding to eigenvalues

1 1
. . -1 1
1 and 3, respectively. Hence if P = 11 | have
1 10
P AP = [ 0 3|

There are two immediate applications of theorem 6.2.1. The first is to the
calculation of A™: If P~'AP =diag (\1, A2), then A = Pdiag (A1, o) P!
and

- M0 oo\ ST A 0 o ST A 0]
N AL I S I A

The second application is to solving a system of linear differential equations

dx

i ax + by
d
d—? = cr+ dy,
where A = [ CCL d ] is a matrix of real or complex numbers and z and y

are functions of ¢. The system can be written in matrix form as X = AX,

o[ []- (4]

where
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We make the substitution X = PY, where Y = { il ] Then z; and ¥
1

are also functions of ¢ and

X =PY =AX = A(PY), soY = (P"'AP)Y = [ Aol f ]Y
2

Hence 1 = A\iz1 and 41 = Aoy1.
These differential equations are well-known to have the solutions z1 =
21(0)eM? and x5 = 29(0)e?2!, where 1(0) is the value of 21 when ¢ = 0.

[If ‘fl—f = kx, where k is a constant, then

d( ke \ _ —kt g dr —kt Kty _
dt(e x)— ke™"x +e i ke "z +e "kx = 0.
Hence e *z is constant, so e ¥z = ¢7*02(0) = 2(0). Hence z = x(0)e** )]
However [ zlégg } =p! [ igg; ], so this determines x1(0) and y;(0) in
1

terms of z(0) and y(0). Hence ultimately x and y are determined as explicit
functions of ¢, using the equation X = PY.

EXAMPLE 6.2.3 Let A = [ Z :2 } Use the eigenvalue method to
derive an explicit formula for A™ and also solve the system of differential
equations

dx

=T 9y —

o r — 3y
dy

= = 4x-5
dt "r y?

given x =7 and y = 13 when ¢t = 0.

Solution. The characteristic polynomial of A is A24+3A+2 which has distinct

roots Ay = —1 and Ay = —2. We find corresponding eigenvectors X; = [ 1 ]

13

aHdX2:|:3 1 4

4]. HenceifP:[

}, we have P~1AP = diag (-1, —2).

Hence

A" = (Pdiag(-1, —2)P™")" = Pdiag ((—1)", (-2)")P*

- LS Gl T
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21 371 0 4 -3
= =D 1 4“0 Q"H—l 1]
A1 3x2n 4 -3
= U7 4><2”H—1 1]
" 4—-3x2" —3+3x2"
- | 4—4x2" —344x2"

To solve the differential equation system, make the substitution X =
PY. Then x = x1 + 3y1, y = 1 + 4y1. The system then becomes

T = -1
?)1 == _2y17

—t

so 21 = 21(0)e", y1 = y1(0)e *". Now

z1(0) | p-1 z(0) | 4 -3 T | -1

n(0) | y(O) | [ -1 1]l 13] 6]’
so 71 = —1le7t and y; = 6e=2. Hence v = —11le~! + 3(6e7%") = —11le~! +
18e72t y = —1le™t +4(6e7 %) = —11le™t + 242t

For a more complicated example we solve a system of inhomogeneous
recurrence relations.

EXAMPLE 6.2.4 Solve the system of recurrence relations

Tnt1 = an —Yn — 1
Yn+l = —Tp+ 2yn + 27

given that xo = 0 and yy = —1.
Solution. The system can be written in matrix form as

Xn+1 = AXn + B,

a2 i [1]

It is then an easy induction to prove that

where

X, =A"Xog+ (A" ...+ A+ IL)B. (6.5)
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Also it is easy to verify by the eigenvalue method that

CREI AP B RS
whereU:[i 1]andV:[_1 _i].Hence
A g f A4, = ZU+(3n_l+”2'+3+l)V
- 2y 8y

Then equation 6.5 gives

e 50 3] e ) ]

which simplifies to

(o] <[ Grrom],

Hence x, = (2n — 1+ 3")/4 and y, = (2n — 5+ 3")/4.

REMARK 6.2.1 If (A — I)~! existed (that is, if det (A — I3) # 0, or
equivalently, if 1 is not an eigenvalue of A), then we could have used the
formula

An_l—{—---—i-A—{—IQ = (An—IQ)(A—IQ)_l. (66)

However the eigenvalues of A are 1 and 3 in the above problem, so formula 6.6
cannot be used there.

Our discussion of eigenvalues and eigenvectors has been limited to 2 x 2
matrices. The discussion is a more complicated for matrices of size greater
than two and is best left to a second course in linear algebra. Nevertheless
the following result is a useful generalization of theorem 6.2.1. The reader
is referred to [28, page 350] for a proof.

THEOREM 6.2.2 Let A be an n x n matrix having distinct eigenvalues

A, ..., A\ and corresponding eigenvectors X1,...,X,. Let P be the matrix
whose columns are respectively Xi,...,X,,. Then P is non-singular and
M O - 0
) Xy - 0
P AP = . . .

0 0 - A



